Physics:Bravais lattice

From HandWiki
Short description: Infinite array of discrete points in three dimensional space generated by a set of discrete translation operations

In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (1850),[1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by:

[math]\displaystyle{ \mathbf{R} = n_{1}\mathbf{a}_{1} + n_{2}\mathbf{a}_{2} + n_{3}\mathbf{a}_{3} }[/math]

where the ni are any integers and ai are primitive translation vectors or primitive vectors which lie in different directions (not necessarily mutually perpendicular) and span the lattice. The choice of primitive vectors for a given Bravais lattice is not unique. A fundamental aspect of any Bravais lattice is that, for any choice of direction, the lattice will appear exactly the same from each of the discrete lattice points when looking in that chosen direction.

The Bravais lattice concept is used to formally define a crystalline arrangement and its (finite) frontiers. A crystal is made up of one or more atoms, called the basis or motif, at each lattice point. The basis may consist of atoms, molecules, or polymer strings of solid matter, and the lattice provides the locations of the basis.

Two Bravais lattices are often considered equivalent if they have isomorphic symmetry groups. In this sense, there are 5 possible Bravais lattices in 2-dimensional space, and 14 possible Bravais lattices in three-dimensional space. The 14 possible symmetry groups of Bravais lattices are 14 of the 230 space groups. In the context of the space group classification, the Bravais lattices are also called Bravais classes, Bravais arithmetic classes, or Bravais flocks.[2]

Unit cell

Main page: Unit cell

In crystallography, there is the concept of a unit cell which comprises the space between adjacent lattice points as well as any atoms in that space. A unit cell is defined as a space that, when translated through a subset of all vectors described by [math]\displaystyle{ \mathbf{R} = n_{1}\mathbf{a}_{1} + n_{2}\mathbf{a}_{2} + n_{3}\mathbf{a}_{3} }[/math], fills the lattice space without overlapping or voids. (I.e., a lattice space is a multiple of a unit cell.)[3] There are mainly two types of unit cells: primitive unit cells and conventional unit cells. A primitive cell is the very smallest component of a lattice (or crystal) which, when stacked together with lattice translation operations, reproduces the whole lattice (or crystal).[4] Note that the translations must be lattice translation operations that cause the lattice to appear unchanged after the translation. If arbitrary translations were allowed, one could make a primitive cell half the size of the true one, and translate twice as often, as an example. Another way of defining the size of a primitive cell that avoids invoking lattice translation operations, is to say that the primitive cell is the smallest possible component of a lattice (or crystal) that can be repeated to reproduce the whole lattice (or crystal), and that contains exactly one lattice point. In either definition, the primitive cell is characterized by its small size. There are clearly many choices of cell that can reproduce the whole lattice when stacked (two lattice halves, for instance), and the minimum size requirement distinguishes the primitive cell from all these other valid repeating units. If the lattice or crystal is 2-dimensional, the primitive cell has a minimum area; likewise in 3 dimensions the primitive cell has a minimum volume. Despite this rigid minimum-size requirement, there is not one unique choice of primitive unit cell. In fact, all cells whose borders are primitive translation vectors will be primitive unit cells. The fact that there is not a unique choice of primitive translation vectors for a given lattice leads to the multiplicity of possible primitive unit cells. Conventional unit cells, on the other hand, are not necessarily minimum-size cells. They are chosen purely for convenience and are often used for illustration purposes. They are loosely defined.

Primitive unit cells are defined as unit cells with the smallest volume for a given crystal. (A crystal is a lattice and a basis at every lattice point.) To have the smallest cell volume, a primitive unit cell must contain (1) only one lattice point and (2) the minimum amount of basis constituents (e.g., the minimum number of atoms in a basis). For the former requirement, counting the number of lattice points in a unit cell is such that, if a lattice point is shared by m adjacent unit cells around that lattice point, then the point is counted as 1/m. The latter requirement is necessary since there are crystals that can be described by more than one combination of a lattice and a basis. For example, a crystal, viewed by a lattice with single kind atoms located at every lattice point (the simplest basis form), may also be seen by another lattice with a basis of two atoms. In this case, a primitive unit cell is a unit cell having only one lattice point in the first way of describing the crystal in order to ensure the smallest unit cell volume.

There can be more than one way to choose a primitive cell for a given crystal and each choice will have a different primitive cell shape, but the primitive cell volume is the same for every choice and each choice will have the property that a one-to-one correspondence can be established between primitive unit cells and discrete lattice points over the associated lattice. All primitive unit cells with different shapes for a given crystal have the same volume by definition; For a given crystal, if n is the density of lattice points in a lattice ensuring the minimum amount of basis constituents and v is the volume of a chosen primitive cell, then nv = 1 resulting in v = 1/n, so every primitive cell has the same volume of 1/n.[3]

Among all possible primitive cells for a given crystal, an obvious primitive cell may be the parallelepiped formed by a chosen set of primitive translation vectors. (Again, these vectors must make a lattice with the minimum amount of basis constituents.)[3] That is, the set of all points [math]\displaystyle{ \mathbf{r} = x_{1}\mathbf{a}_{1} + x_{2}\mathbf{a}_{2} + x_{3}\mathbf{a}_{3} }[/math] where [math]\displaystyle{ 0 \le x_{i} \lt 1 }[/math] and [math]\displaystyle{ \mathbf{a}_{i} }[/math] is the chosen primitive vector. This primitive cell does not always show the clear symmetry of a given crystal. In this case, a conventional unit cell easily displaying the crystal symmetry is often used. The conventional unit cell volume will be an integer-multiple of the primitive unit cell volume.

Origin of concept

In two dimensions, any lattice can be specified by the length of its two primitive translation vectors and the angle between them. There are an infinite number of possible lattices one can describe in this way. Some way to categorize different types of lattices is desired. One way to do so is to recognize that some lattices have inherent symmetry. One can imposed conditions on the length of the primitive translation vectors and on the angle between them to produce various symmetric lattices. These symmetries themselves are categorized into different types, such as mirror symmetries, inversion symmetries, rotation symmetries and translational symmetries. A particular combination of these symmetries (for example, two-fold rotation symmetry and mirror symmetry) is called a point group. Thus, lattices can be categorized based on what point group applies to them. The most basic point group corresponds to rotational invariance under 2π and π, or 1- and 2-fold rotational symmetry. This actually applies automatically to all 2-dimensional lattices, and is the most general point group. Lattices contained in this group (technically all lattices, but conventionally all lattices that don't fall into any of the other point groups) are called oblique lattices. From there, in two dimensions, there are 4 further point groups (or equivalently, 4 types of restriction on the lengths/angles of the primitive translation vectors) that correspond to the 4 remaining lattice categories: square, hexagonal, rectangular, and centered rectangular. Thus altogether there are 5 Bravais lattices in 2 dimensions. Likewise, in 3 dimensions, there are 14 Bravais lattices: 1 general "wastebasket" category (triclinic) and 13 more categories. These 14 lattice types are further grouped for convenience into 7 lattice systems (triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal, and hexagonal).

In 2 dimensions

In two-dimensional space, there are 5 Bravais lattices,[5] grouped into four crystal families.

Note: In the unit cell diagrams in the following table the lattice points are depicted using black circles and the unit cells are depicted using parallelograms (which may be squares or rectangles) outlined in black. Although each of the four corners of each parallelogram connects to a lattice point, only one of the four lattice points technically belongs to a given unit cell and each of the other three lattice points belongs to one of the adjacent unit cells. This can be seen by imagining moving the unit cell parallelogram slightly left and slightly down while leaving all the black circles of the lattice points fixed.

Crystal family Point group
(Schönflies notation)
5 Bravais lattices
Primitive (p) Centered (c)
Monoclinic (m) C2 Oblique
Orthorhombic (o) D2 Oblique
Centered rectangular
Tetragonal (t) D4 Oblique
Hexagonal (h) D6 Oblique

The unit cells are specified according to the relative lengths of the cell edges (a and b) and the angle between them (θ). The area of the unit cell can be calculated by evaluating the norm ||a × b||, where a and b are the lattice vectors. The properties of the crystal families are given below:

Crystal family Area Axial distances (edge lengths) Axial angle
Monoclinic [math]\displaystyle{ ab \, \sin\theta }[/math] ab θ ≠ 90°
Orthorhombic [math]\displaystyle{ ab }[/math] ab θ = 90°
Tetragonal [math]\displaystyle{ a^2 }[/math] a = b θ = 90°
Hexagonal [math]\displaystyle{ \frac{\sqrt{3}}{2}\, a^2 }[/math] a = b θ = 120°

In 3 dimensions

File:Diamond lattice.stl In three-dimensional space, there are 14 Bravais lattices. These are obtained by combining one of the seven lattice systems with one of the centering types. The centering types identify the locations of the lattice points in the unit cell as follows:

  • Primitive (P): lattice points on the cell corners only (sometimes called simple)
  • Base-centered (A, B, or C): lattice points on the cell corners with one additional point at the center of each face of one pair of parallel faces of the cell (sometimes called end-centered)
  • Body-centered (I): lattice points on the cell corners, with one additional point at the center of the cell
  • Face-centered (F): lattice points on the cell corners, with one additional point at the center of each of the faces of the cell

Not all combinations of lattice systems and centering types are needed to describe all of the possible lattices, as it can be shown that several of these are in fact equivalent to each other. For example, the monoclinic I lattice can be described by a monoclinic C lattice by different choice of crystal axes. Similarly, all A- or B-centred lattices can be described either by a C- or P-centering. This reduces the number of combinations to 14 conventional Bravais lattices, shown in the table below.[6] Below each diagram is the Pearson symbol for that Bravais lattice.

Note: In the unit cell diagrams in the following table all the lattice points on the cell boundary (corners and faces) are shown; however, not all of these lattice points technically belong to the given unit cell. This can be seen by imagining moving the unit cell slightly in the negative direction of each axis while keeping the lattice points fixed. Roughly speaking, this can be thought of as moving the unit cell slightly left, slightly down, and slightly out of the screen. This shows that only one of the eight corner lattice points (specifically the front, left, bottom one) belongs to the given unit cell (the other seven lattice points belong to adjacent unit cells). In addition, only one of the two lattice points shown on the top and bottom face in the Base-centered column belongs to the given unit cell. Finally, only three of the six lattice points on the faces in the Face-centered column belongs to the given unit cell.

Crystal family Lattice system Point group
(Schönflies notation)
14 Bravais lattices
Primitive (P) Base-centered (S) Body-centered (I) Face-centered (F)
Triclinic (a) Ci Triclinic


Monoclinic (m) C2h Monoclinic, simple


Monoclinic, centered


Orthorhombic (o) D2h Orthorhombic, simple


Orthorhombic, base-centered


Orthorhombic, body-centered


Orthorhombic, face-centered


Tetragonal (t) D4h Tetragonal, simple


Tetragonal, body-centered


Hexagonal (h) Rhombohedral D3d Rhombohedral


Hexagonal D6h Hexagonal


Cubic (c) Oh Cubic, simple


Cubic, body-centered


Cubic, face-centered


The unit cells are specified according to six lattice parameters which are the relative lengths of the cell edges (a, b, c) and the angles between them (α, β, γ). The volume of the unit cell can be calculated by evaluating the triple product a · (b × c), where a, b, and c are the lattice vectors. The properties of the lattice systems are given below:

Crystal family Lattice system Volume Axial distances (edge lengths)[7] Axial angles[7] Corresponding examples
Triclinic [math]\displaystyle{ abc \sqrt{1-\cos^2\alpha-\cos^2\beta-\cos^2\gamma+2\cos\alpha \cos\beta \cos\gamma} }[/math] (All remaining cases) K2Cr2O7, CuSO4·5H2O, H3BO3
Monoclinic [math]\displaystyle{ abc \, \sin\beta }[/math] ac α = γ = 90°, β ≠ 90° Monoclinic sulphur, Na2SO4·10H2O, PbCrO3
Orthorhombic [math]\displaystyle{ abc }[/math] abc α = β = γ = 90° Rhombic sulphur, KNO3, BaSO4
Tetragonal [math]\displaystyle{ a^2c }[/math] a = bc α = β = γ = 90° White tin, SnO2, TiO2, CaSO4
Hexagonal Rhombohedral [math]\displaystyle{ a^3 \sqrt{1 - 3\cos^2\alpha + 2\cos^3\alpha} }[/math] a = b = c α = β = γ ≠ 90° Calcite (CaCO3), cinnabar (HgS)
Hexagonal [math]\displaystyle{ \frac{\sqrt{3}}{2}\, a^2c }[/math] a = b α = β = 90°, γ = 120° Graphite, ZnO, CdS
Cubic [math]\displaystyle{ a^3 }[/math] a = b = c α = β = γ = 90° NaCl, zinc blende, copper metal, KCl, Diamond, Silver

In 4 dimensions

In four dimensions, there are 64 Bravais lattices. Of these, 23 are primitive and 41 are centered. Ten Bravais lattices split into enantiomorphic pairs.[8]

See also


  1. Aroyo, Mois I.; Müller, Ulrich; Wondratschek, Hans (2006). "Historical Introduction". International Tables for Crystallography A1 (1.1): 2–5. doi:10.1107/97809553602060000537. Retrieved 2008-04-21. 
  2. "Bravais class". IUCr. 
  3. 3.0 3.1 3.2 Ashcroft, Neil; Mermin, Nathaniel (1976). Solid State Physics. Saunders College Publishing. pp. 71-72. ISBN 0030839939. 
  4. "Error: no |title= specified when using {{Cite web}}". 
  5. Kittel, Charles (1996). "Chapter 1". Introduction to Solid State Physics (Seventh ed.). New York: John Wiley & Sons. pp. 10. ISBN 978-0-471-11181-8. Retrieved 2008-04-21. 
  6. Based on the list of conventional cells found in Hahn (2002), p. 744
  7. 7.0 7.1 Hahn (2002), p. 758
  8. Brown, Harold; Bülow, Rolf; Neubüser, Joachim; Wondratschek, Hans; Zassenhaus, Hans (1978), Crystallographic groups of four-dimensional space, New York: Wiley-Interscience [John Wiley & Sons], ISBN 978-0-471-03095-9 

Further reading

External links