Von Staudt–Clausen theorem
In number theory, the von Staudt–Clausen theorem is a result determining the fractional part of Bernoulli numbers, found independently by Karl von Staudt (1840) and Thomas Clausen (1840).
Specifically, if n is a positive integer and we add 1/p to the Bernoulli number B2n for every prime p such that p − 1 divides 2n, we obtain an integer, i.e., [math]\displaystyle{ B_{2n} + \sum_{(p-1)|2n} \frac1p \in \Z . }[/math]
This fact immediately allows us to characterize the denominators of the non-zero Bernoulli numbers B2n as the product of all primes p such that p − 1 divides 2n; consequently the denominators are square-free and divisible by 6.
These denominators are
- 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, ... (sequence A002445 in the OEIS).
The sequence of integers [math]\displaystyle{ B_{2n} + \sum_{(p-1)|2n} \frac1p }[/math] is
- 1, 1, 1, 1, 1, 1, 2, -6, 56, -528, 6193, -86579, 1425518, -27298230, ... (sequence A000146 in the OEIS).
Proof
A proof of the Von Staudt–Clausen theorem follows from an explicit formula for Bernoulli numbers which is:
- [math]\displaystyle{ B_{2n}=\sum_{j=0}^{2n}{\frac{1}{j+1}}\sum_{m=0}^{j}{(-1)^{m}{j\choose m}m^{2n}} }[/math]
and as a corollary:
- [math]\displaystyle{ B_{2n}=\sum_{j=0}^{2n}{\frac{j!}{j+1}}(-1)^jS(2n,j) }[/math]
where [math]\displaystyle{ S(n,j) }[/math] are the Stirling numbers of the second kind.
Furthermore the following lemmas are needed:
Let p be a prime number then,
1. If p-1 divides 2n then,
- [math]\displaystyle{ \sum_{m=0}^{p-1}{(-1)^m{p-1\choose m} m^{2n}}\equiv{-1}\pmod p }[/math]
2. If p-1 does not divide 2n then,
- [math]\displaystyle{ \sum_{m=0}^{p-1}{(-1)^m{p-1\choose m} m^{2n}}\equiv0\pmod p }[/math]
Proof of (1) and (2): One has from Fermat's little theorem,
- [math]\displaystyle{ m^{p-1}\equiv 1\pmod p }[/math]
for [math]\displaystyle{ m=1,2,...,p-1 }[/math].
If p-1 divides 2n then one has,
- [math]\displaystyle{ m^{2n}\equiv 1\pmod p }[/math]
for [math]\displaystyle{ m=1,2,...,p-1 }[/math].
Thereafter one has,
- [math]\displaystyle{ \sum_{m=1}^{p-1}{(-1)^m{p-1\choose m} m^{2n}}\equiv \sum_{m=1}^{p-1}{(-1)^m{p-1\choose m}}\pmod p }[/math]
from which (1) follows immediately.
If p-1 does not divide 2n then after Fermat's theorem one has,
- [math]\displaystyle{ m^{2n}\equiv m^{2n-(p-1)}\pmod p }[/math]
If one lets [math]\displaystyle{ \wp=[\frac{2n}{p-1}] }[/math] (Greatest integer function) then after iteration one has,
- [math]\displaystyle{ m^{2n}\equiv m^{2n-\wp(p-1)}\pmod p }[/math]
for [math]\displaystyle{ m=1,2,...,p-1 }[/math] and [math]\displaystyle{ 0\lt 2n-\wp(p-1)\lt p-1 }[/math].
Thereafter one has,
- [math]\displaystyle{ \sum_{m=0}^{p-1}{(-1)^m{p-1\choose m} m^{2n}}\equiv\sum_{m=0}^{p-1}{(-1)^m{p-1\choose m} m^{2n-\wp(p-1)}}\pmod p }[/math]
Lemma (2) now follows from the above and the fact that S(n,j)=0 for j>n.
(3). It is easy to deduce that for a>2 and b>2, ab divides (ab-1)!.
(4). Stirling numbers of second kind are integers.
Proof of the theorem: Now we are ready to prove Von-Staudt Clausen theorem,
If j+1 is composite and j>3 then from (3), j+1 divides j!.
For j=3,
- [math]\displaystyle{ \sum_{m=0}^{3}{(-1)^m{3\choose m}m^{2n}}=3 \cdot 2^{2n}-3^{2n}-3\equiv0 \pmod 4 }[/math]
If j+1 is prime then we use (1) and (2) and if j+1 is composite then we use (3) and (4) to deduce:
- [math]\displaystyle{ B_{2n}=I_n-\sum_{(p-1)|2n}{\frac{1}{p}} }[/math]
where [math]\displaystyle{ I_n }[/math] is an integer, which is the Von-Staudt Clausen theorem.[1][2]
See also
References
- Clausen, Thomas (1840), "Theorem", Astronomische Nachrichten 17 (22): 351–352, doi:10.1002/asna.18400172204
- Rado, R. (1934), "A New Proof of a Theorem of V. Staudt", J. London Math. Soc. 9 (2): 85–88, doi:10.1112/jlms/s1-9.2.85
- von Staudt, Ch. (1840), "Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend", Journal für die Reine und Angewandte Mathematik 21: 372–374, ERAM 021.0672cj, ISSN 0075-4102, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002142562
External links
- Weisstein, Eric W.. "von Staudt-Clausen Theorem". http://mathworld.wolfram.com/vonStaudt-ClausenTheorem.html.
Original source: https://en.wikipedia.org/wiki/Von Staudt–Clausen theorem.
Read more |