Biology:Calmodulin-binding proteins

From HandWiki
Revision as of 19:09, 12 August 2022 by imported>CodeMe (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Protein family

Calmodulin-binding proteins are, as their name implies, proteins which bind calmodulin. Calmodulin can bind to a variety of proteins through a two-step binding mechanism, namely "conformational and mutually induced fit",[1] where typically two domains of calmodulin wrap around an emerging helical calmodulin binding domain from the target protein.

Examples include:

  • Gap-43 protein (presynaptic)
  • Neurogranin (postsynaptic)
  • Caldesmon

Ca2+ Activation

A variety of different ions, including Calcium (Ca2+), play a vital role in the regulation of cellular functions. Calmodulin, a Calcium-binding protein, that mediates Ca2+ signaling is involved in all types of cellular mechanisms, including metabolism, synaptic plasticity, nerve growth, smooth muscle contraction, etc. Calmodulin allows for a number of proteins to aid in the progression of these pathways using their interactions with CaM in its Ca2+-free or Ca2+-bound state. Proteins each have their own unique affinities for calmodulin, that can be manipulated by Ca2+ concentrations to allow for the desired release or binding to calmodulin that determines its ability to carry out its cellular function. Proteins that get activated upon binding to Ca2+-bound state, include Myosin light-chain kinase, Phosphatase, Ca2+/calmodulin-dependent protein kinase II, etc. Proteins, such as neurogranin that plays a vital role in postsynaptic function, however, can bind to calmodulin in Ca2+-free or Ca2+-bound state via their IQ calmodulin-binding motifs.[2] Since these interactions are exceptionally specific, they can be regulated through post-translational modifications by enzymes like kinases and phosphatases to affect their cellular functions. In the case of neurogranin, it's the synaptic function can be inhibited by the PKC-mediated phosphorylation of its IQ calmodulin-binding motif that impedes its interaction with calmodulin.[3]

Cellular functions can be indirectly regulated by calmodulin, as it acts as a mediator for enzymes that require Ca2+ stimulation for activation. Studies have proven that calmodulin's affinity for Ca2+ increases when it is bound to a calmodulin-binding protein, which allows for it to take on its regulatory role for Ca2+-dependent reactions. Calmodulin, made up of two pairs of EF-hand motifs separated in different structural regions by an extended alpha helical region, that permits it to respond to the changes in the cytosolic concentration of the Ca2+ ions by taking on two distinct conformations, in the inactive Ca2+ unbound state and active Ca2+ bound state. Calmodulin binds to the targeted proteins via their short complementary peptide sequences, causing an “induced fit” conformational change that alters the calmodulin-binding proteins’ activity as desired in response to the second messenger Ca2+ signals that arise due to changes in the intracellular Ca2+ concentrations. These second messenger Ca2+ signals are transduced and integrated to maintain a homeostatic balance of the Ca2+ ions.[4]

GAP-43 Protein

Found in the nervous system, GAP-43 is a growth-associated protein (GAP) expressed in high levels during presynaptic developmental and regenerative axonal growth. As a major growth cone component, an increase in GAP-43 concentrations delays the process of axonal growth cones evolving into stable synaptic terminals. All GAP-43 proteins share a completely conserved amino acid sequence that contain a calmodulin-binding domain and a serine residue that can be used to inhibit calmodulin binding upon phosphorylation of Protein kinase C (PKC). By possessing these calmodulin-binding properties, GAP-43 is able to respond to PKC activation and release free calmodulin in desired areas. When there are low levels of Ca2+ concentrations, GAP-43 is able to bind and stabilize the inactive Ca2+-free state of calmodulin, this allows it to absorb and reversibly inactivate the CaM in the growth cones. This binding of the calmodulin to GAP-43 is allowed by the electrostatic interaction between the negatively-charged calmodulin and the positively-charged “pocket” formed in the GAP-43 molecule.[5]

References

  1. "Protein recognition and selection through conformational and mutually induced fit". Proc Natl Acad Sci U S A 110 (51): 20545–50. December 2013. doi:10.1073/pnas.1312788110. PMID 24297894. Bibcode2013PNAS..11020545W. 
  2. "Neurogranin alters the structure and calcium binding properties of calmodulin". J Biol Chem 289 (21): 14644–55. 2014-05-23. doi:10.1074/jbc.M114.560656. PMID 24713697. 
  3. Kaleka, Kanwardeep S.; Petersen, Amber N.; Florence, Matthew A.; Gerges, Nashaat Z. (2012-01-23). "Pull-down of Calmodulin-binding Proteins". Journal of Visualized Experiments (59): 3502. doi:10.3791/3502. ISSN 1940-087X. PMID 22297704. 
  4. Zielinski, Raymond E. (1998). "Calmodulin and Calmodulin-Binding Proteins in Plants". Annual Review of Plant Physiology and Plant Molecular Biology 49 (1): 697–725. doi:10.1146/annurev.arplant.49.1.697. ISSN 1040-2519. PMID 15012251. 
  5. Skene, J.H.Pate (1990). "GAP-43 as a 'calmodulin sponge' and some implications for calcium signalling in axon terminals". Neuroscience Research Supplements 13: S112–S125. doi:10.1016/0921-8696(90)90040-a. ISSN 0921-8696. PMID 1979675. 

External links