Bernoulli polynomials of the second kind
The Bernoulli polynomials of the second kind[1][2] ψn(x), also known as the Fontana-Bessel polynomials,[3] are the polynomials defined by the following generating function:
- [math]\displaystyle{ \frac{z(1+z)^x}{\ln(1+z)}= \sum_{n=0}^\infty z^n \psi_n(x) ,\qquad |z|\lt 1. }[/math]
The first five polynomials are:
- [math]\displaystyle{ \begin{array}{l} \displaystyle \psi_0(x)=1 \\[2mm] \displaystyle \psi_1(x)=x+\frac12 \\[2mm] \displaystyle \psi_2(x)=\frac12x^2-\frac{1}{12}\\[2mm] \displaystyle \psi_3(x)=\frac16x^3-\frac14x^2+\frac{1}{24}\\[2mm] \displaystyle \psi_4(x)=\frac{1}{24}x^4-\frac16x^3+\frac16x^2 -\frac{19}{720} \end{array} }[/math]
Some authors define these polynomials slightly differently[4][5]
- [math]\displaystyle{ \frac{z(1+z)^x}{\ln(1+z)}= \sum_{n=0}^\infty \frac{z^n}{n!} \psi^*_n(x) ,\qquad |z|\lt 1, }[/math]
so that
- [math]\displaystyle{ \psi^*_n(x)= \psi_n(x)\, n! }[/math]
and may also use a different notation for them (the most used alternative notation is bn(x)). Under this convention, the polynomials form a Sheffer sequence.
The Bernoulli polynomials of the second kind were largely studied by the Hungarian mathematician Charles Jordan,[1][2] but their history may also be traced back to the much earlier works.[3]
Integral representations
The Bernoulli polynomials of the second kind may be represented via these integrals[1][2]
- [math]\displaystyle{ \psi_{n}(x) = \int\limits_x^{x+1}\! \binom{u}{n}\, du = \int\limits_0^1 \binom{x+u}{n}\, du }[/math]
as well as[3]
- [math]\displaystyle{ \begin{array}{l} \displaystyle \psi_{n}(x)=\frac{(-1)^{n+1}}{\pi} \int\limits_0^\infty \frac{\pi \cos\pi x - \sin\pi x \ln z}{(1+z)^n} \cdot\frac{z^x dz}{\ln^2 z +\pi^2} ,\qquad -1\leq x\leq n-1\, \\[3mm] \displaystyle \psi_{n}(x)=\frac{(-1)^{n+1}}{\pi} \int\limits_{-\infty}^{+\infty} \frac{\pi \cos\pi x - v\sin\pi x }{\,(1+e^v)^n} \cdot\frac{e^{v(x+1)} }{v^2 +\pi^2}\, dv ,\qquad -1\leq x\leq n-1\, \end{array} }[/math]
These polynomials are, therefore, up to a constant, the antiderivative of the binomial coefficient and also that of the falling factorial.[1][2][3]
Explicit formula
For an arbitrary n, these polynomials may be computed explicitly via the following summation formula[1][2][3]
- [math]\displaystyle{ \psi_{n}(x) = \frac{1}{(n-1)!}\sum_{l=0}^{n-1} \frac{s(n-1,l)}{l+1} x^{l+1} + G_{n},\qquad n=1,2,3,\ldots }[/math]
where s(n,l) are the signed Stirling numbers of the first kind and Gn are the Gregory coefficients.
The expansion of the Bernoulli polynomials of the second kind into a Newton series reads[1][2]
- [math]\displaystyle{ \psi_{n}(x) = G_0 \binom{x}{n} + G_1 \binom{x}{n-1} + G_2 \binom{x}{n-2} + \ldots + G_n }[/math]
It can be shown using the second integral representation and Vandermonde's identity.
Recurrence formula
The Bernoulli polynomials of the second kind satisfy the recurrence relation[1][2]
- [math]\displaystyle{ \psi_{n}(x+1) - \psi_{n}(x) = \psi_{n-1}(x) }[/math]
or equivalently
- [math]\displaystyle{ \Delta\psi_{n}(x) = \psi_{n-1}(x) }[/math]
The repeated difference produces[1][2]
- [math]\displaystyle{ \Delta^m\psi_{n}(x) = \psi_{n-m}(x) }[/math]
Symmetry property
The main property of the symmetry reads[2][4]
- [math]\displaystyle{ \psi_{n}(\tfrac12n-1+x) = (-1)^n\psi_{n}(\tfrac12n-1-x) }[/math]
Some further properties and particular values
Some properties and particular values of these polynomials include
- [math]\displaystyle{ \begin{array}{l} \displaystyle \psi_n(0)=G_n \\[2mm] \displaystyle \psi_n(1)=G_{n-1} + G_{n} \\[2mm] \displaystyle \psi_n(-1)= (-1)^{n+1} \sum_{m=0}^n |G_m| = (-1)^n C_n\\[2mm] \displaystyle \psi_n(n-2)=-|G_n| \\[2mm] \displaystyle \psi_n(n-1)= (-1)^n \psi_n(-1) = 1- \sum_{m=1}^n |G_m|\\[2mm] \displaystyle \psi_{2n}(n-1)=M_{2n} \\[2mm] \displaystyle \psi_{2n}(n-1+y)=\psi_{2n}(n-1-y) \\[2mm] \displaystyle \psi_{2n+1}(n-\tfrac12+y)=-\psi_{2n+1}(n-\tfrac12-y) \\[2mm] \displaystyle \psi_{2n+1}(n-\tfrac12)=0 \end{array} }[/math]
where Cn are the Cauchy numbers of the second kind and Mn are the central difference coefficients.[1][2][3]
Some series involving the Bernoulli polynomials of the second kind
The digamma function Ψ(x) may be expanded into a series with the Bernoulli polynomials of the second kind in the following way[3]
- [math]\displaystyle{ \Psi(v)=\ln(v+a) + \sum_{n=1}^\infty\frac{(-1)^n\psi_{n}(a)\,(n-1)!}{(v)_{n}},\qquad \Re(v)\gt -a, }[/math]
and hence[3]
[math]\displaystyle{ \gamma= -\ln(a+1) - \sum_{n=1}^\infty\frac{(-1)^n \psi_{n}(a)}{n},\qquad \Re(a)\gt -1 }[/math]
and
- [math]\displaystyle{ \gamma=\sum_{n=1}^\infty\frac{(-1)^{n+1}}{2n}\Big\{\psi_{n}(a)+ \psi_{n}\Big(-\frac{a}{1+a}\Big)\Big\}, \quad a\gt -1 }[/math]
where γ is Euler's constant. Furthermore, we also have[3]
- [math]\displaystyle{ \Psi(v)= \frac{1}{v+a-\tfrac12}\left\{\ln\Gamma(v+a) + v - \frac12\ln2\pi - \frac12 + \sum_{n=1}^\infty\frac{(-1)^n \psi_{n+1}(a)}{(v)_{n}}(n-1)!\right\},\qquad \Re(v)\gt -a, }[/math]
where Γ(x) is the gamma function. The Hurwitz and Riemann zeta functions may be expanded into these polynomials as follows[3]
- [math]\displaystyle{ \zeta(s,v)= \frac{(v+a)^{1-s} }{s-1} + \sum_{n=0}^\infty (-1)^n \psi_{n+1}(a) \sum_{k=0}^{n} (-1)^k \binom{n}{k} (k+v)^{-s} }[/math]
and
- [math]\displaystyle{ \zeta(s)= \frac{(a+1)^{1-s} }{s-1} + \sum_{n=0}^\infty (-1)^n \psi_{n+1}(a) \sum_{k=0}^{n} (-1)^k \binom{n}{k} (k+1)^{-s} }[/math]
and also
- [math]\displaystyle{ \zeta(s) =1 + \frac{(a+2)^{1-s}}{s-1} + \sum_{n=0}^\infty (-1)^n \psi_{n+1}(a) \sum_{k=0}^{n} (-1)^k \binom{n}{k} (k+2)^{-s} }[/math]
The Bernoulli polynomials of the second kind are also involved in the following relationship[3]
- [math]\displaystyle{ \big(v+a-\tfrac{1}{2}\big)\zeta(s,v) = -\frac{\zeta(s-1,v+a)}{s-1} + \zeta(s-1,v) + \sum_{n=0}^\infty (-1)^n \psi_{n+2}(a) \sum_{k=0}^{n} (-1)^k \binom{n}{k} (k+v)^{-s} }[/math]
between the zeta functions, as well as in various formulas for the Stieltjes constants, e.g.[3]
- [math]\displaystyle{ \gamma_m(v)=-\frac{\ln^{m+1}(v+a)}{m+1} + \sum_{n=0}^\infty (-1)^n \psi_{n+1}(a) \sum_{k=0}^{n} (-1)^k \binom{n}{k}\frac{\ln^m (k+v)}{k+v} }[/math]
and
- [math]\displaystyle{ \gamma_m(v)=\frac{1}{\tfrac{1}{2}-v-a} \left\{\frac{(-1)^m}{m+1}\,\zeta^{(m+1)}(0,v+a)- (-1)^m \zeta^{(m)}(0,v) - \sum_{n=0}^\infty (-1)^n \psi_{n+2}(a) \sum_{k=0}^{n} (-1)^k \binom{n}{k}\frac{\ln^m (k+v)}{k+v}\right\} }[/math]
which are both valid for [math]\displaystyle{ \Re(a) \gt -1 }[/math] and [math]\displaystyle{ v\in\mathbb{C}\setminus\!\{0,-1,-2,\ldots\} }[/math].
See also
- Bernoulli polynomials
- Stirling polynomials
- Gregory coefficients
- Bernoulli numbers
- Difference polynomials
- Poly-Bernoulli number
- Mittag-Leffler polynomials
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Jordan, Charles (1928), "Sur des polynomes analogues aux polynomes de Bernoulli, et sur des formules de sommation analogues à celle de Maclaurin-Euler", Acta Sci. Math. (Szeged) 4: 130–150
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Jordan, Charles (1965). The Calculus of Finite Differences (3rd Edition). Chelsea Publishing Company.
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 Blagouchine, Iaroslav V. (2018), "Three notes on Ser's and Hasse's representations for the zeta-functions", INTEGERS: The Electronic Journal of Combinatorial Number Theory 18A (#A3): 1–45, http://math.colgate.edu/~integers/sjs3/sjs3.pdf arXiv
- ↑ 4.0 4.1 Roman, S. (1984). The Umbral Calculus. New York: Academic Press.
- ↑ Weisstein, Eric W.. Bernoulli Polynomial of the Second Kind. From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BernoulliPolynomialoftheSecondKind.html.
Mathematics
Original source: https://en.wikipedia.org/wiki/Bernoulli polynomials of the second kind.
Read more |