Biology:Methylobacterium extorquens

From HandWiki
Revision as of 16:55, 10 February 2024 by Ohm (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Species of bacterium


Methylobacterium extorquens
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Binomial name
Methylobacterium extorquens
(Urakami and Komagata 1984)
Bousfield and Green 1985
Synonyms

Bacillus extorquens Bassalik 1913
Vibrio extorquens (Bassalik 1913) Bhat and Barker 1948
Pseudomonas extorquens (Bassalik 1913) Krasil'nikov 1949
Flavobacterium extorquens (Bassalik 1913) Bassalik et al. 1960
Protomonas extorquens (ex Bassalik 1913) Urakami and Komagata 1984
Methylobacterium chloromethanicum Kato et al. 2005
[1]
Methylobacterium dichloromethanicum Kato et al. 2005[1]

Methylobacterium extorquens is a Gram-negative bacterium. Methylobacterium often appear pink, and are classified as pink-pigmented facultative methylotrophs, or PPFMs.[2] The wild type has been known to use both methane and multiple carbon compounds as energy sources.[2] Specifically, M. extorquens has been observed to use primarily methanol and C1 compounds as substrates in their energy cycles.[3]

Genetic structure

After isolation from soil, M. extorquens was found to have a single chromosome measuring 5.71-Mb.[4] The bacterium itself contains 70 genes over eight regions of the chromosome that are used for its metabolism of methanol.[5] Within a section of the chromosome, of M. extorquens AM1 are two xoxF genes that enable it to grow in methanol.[6]

M. extorquens AM1 genome encodes a 47.5 kb gene of unknown function. This gene encodes an over 15,000 residue-long polypeptide along with three unique compounds that are not expressed.[7] The microbe uses the mxa gene[8] as a way to dehydrogenate methanol and use it as an energy source.[7]

Chemical use

Methylobacterium extorquens uses primarily C1 and C2 compounds to grow.[9] Utilizing compounds with few carbon-carbon bonds allows the bacterium to successfully grow in environments with methanol, such as on the surface of leaves whose stomata emit methanol.[10] The ability to use methanol as both a carbon and energy source was show to be advantageous when colonizing Medicago truncatula.[11]

H4MPT-dependent formaldehyde oxidation was first isolated in M. extroquens AM1 and has been used to define if an organism is utilizing methylotrophic metabolism.[7]

Relationships with other organisms

Many bacteria within the Methylobacterium genus live in different biotic environments such as soils, dust, and plant leaves.[12] Some of these bacteria have been found in symbiotic relationships with the plants they inhabit in which they provide fixed nitrogen or produce vitamin B12.[13] M. extorquens also produces PhyR which plants use to regulate stress response, allowing the plant to survive in different conditions.[14] In addition to PhyR, the bacterium can produce a hormone related to overall plant and root growth.[15]

M. extorquens has been found having a mutualistic relationship with strawberries.[16] Ultimately, M. extorquens is used to oxidize 1,2-propanediol to lactaldehyde, which is later used in chemical reactions.[17] If introduced to blooming plants, furaneol production increases, changing the way the strawberry tastes.[16]

References

  1. 1.0 1.1 LPSN lpsn.dsmz.de
  2. 2.0 2.1 Lidstrom, Mary E.; Chistoserdova, Ludmila (2002-04-01). "Plants in the Pink: Cytokinin Production by Methylobacterium" (in en). Journal of Bacteriology 184 (7): 1818. doi:10.1128/JB.184.7.1818.2002. ISSN 0021-9193. PMID 11889085. 
  3. Belkhelfa, Sophia; Roche, David; Dubois, Ivan; Berger, Anne; Delmas, Valérie A.; Cattolico, Laurence; Perret, Alain; Labadie, Karine et al. (2019). "Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations" (in en). Frontiers in Microbiology 10: 1313. doi:10.3389/fmicb.2019.01313. PMID 31281294. 
  4. Belkhelfa, Sophia; Labadie, Karine; Cruaud, Corinne; Aury, Jean-Marc; Roche, David; Bouzon, Madeleine; Salanoubat, Marcel; Döring, Volker (February 2018). "Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland" (in en). Genome Announcements 6 (8). doi:10.1128/genomeA.00018-18. PMID 29472323. 
  5. Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz (2015). "Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.". BioMed Research International 2015: 909016. doi:10.1155/2015/909016. ISSN 2314-6133. PMID 25861650. 
  6. Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz (2015). "Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.". BioMed Research International 2015: 909016. doi:10.1155/2015/909016. ISSN 2314-6133. PMID 25861650. 
  7. 7.0 7.1 7.2 Vuilleumier, Stéphane; Chistoserdova, Ludmila; Lee, Ming-Chun; Bringel, Françoise; Lajus, Aurélie; Zhou, Yang; Gourion, Benjamin; Barbe, Valérie et al. (2009-05-18). "Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources". PLOS ONE 4 (5): e5584. doi:10.1371/journal.pone.0005584. ISSN 1932-6203. PMID 19440302. Bibcode2009PLoSO...4.5584V. 
  8. "MX1 Gene - GeneCards | MX1 Protein | MX1 Antibody". https://www.genecards.org/cgi-bin/carddisp.pl?gene=MX1. 
  9. Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz (2015). "Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.". BioMed Research International 2015: 909016. doi:10.1155/2015/909016. ISSN 2314-6133. PMID 25861650. 
  10. Nemecek-Marshall, M.; MacDonald, R. C.; Franzen, J. J.; Wojciechowski, C. L.; Fall, R. (1995-08-01). "Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development)" (in en). Plant Physiology 108 (4): 1359–1368. doi:10.1104/pp.108.4.1359. ISSN 0032-0889. PMID 12228547. PMC 157513. http://www.plantphysiol.org/content/108/4/1359. 
  11. Sy, Abdoulaye; Timmers, Antonius C. J.; Knief, Claudia; Vorholt, Julia A. (2005-11-01). "Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions" (in en). Applied and Environmental Microbiology 71 (11): 7245–7252. doi:10.1128/AEM.71.11.7245-7252.2005. ISSN 0099-2240. PMID 16269765. 
  12. Sy, Abdoulaye; Timmers, Antonius C. J.; Knief, Claudia; Vorholt, Julia A. (November 2005). "Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions" (in en). Applied and Environmental Microbiology 71 (11): 7245–52. doi:10.1128/AEM.71.11.7245-7252.2005. ISSN 7245-7252. PMID 16269765. 
  13. Sy, Abdoulaye; Timmers, Antonius C. J.; Knief, Claudia; Vorholt, Julia A. (November 2005). "Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions" (in en). Applied and Environmental Microbiology 71 (11): 7245–52. doi:10.1128/AEM.71.11.7245-7252.2005. ISSN 7245-7252. PMID 16269765. 
  14. Gourion, Benjamin; Francez-Charlot, Anne; Vorholt, Julia A. (2008-02-01). "PhyR Is Involved in the General Stress Response of Methylobacterium extorquens AM1" (in en). Journal of Bacteriology 190 (3): 1027–1035. doi:10.1128/JB.01483-07. ISSN 0021-9193. PMID 18024517. 
  15. Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz (2015). "Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.". BioMed Research International 2015: 909016. doi:10.1155/2015/909016. ISSN 2314-6133. PMID 25861650. 
  16. 16.0 16.1 Siegmund, Barbara; Leitner, Erich (2014-01-01), Ferreira, Vicente; Lopez, Ricardo, eds., "Chapter 26 - The Effect of Methylobacteria Application on Strawberry Flavor Investigated by GC-MS and Comprehensive GC×GC-qMS" (in en), Flavour Science (San Diego: Academic Press): pp. 141–145, ISBN 978-0-12-398549-1, http://www.sciencedirect.com/science/article/pii/B978012398549100026X, retrieved 2020-09-21 
  17. Nasopoulou, Constantina; Pohjanen, Johanna; Koskimäki, Janne J.; Zabetakis, Ioannis; Pirttilä, Anna Maria (2014-08-15). "Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization". Journal of Plant Physiology 171 (13): 1099–1105. doi:10.1016/j.jplph.2014.03.018. ISSN 1618-1328. PMID 24973582. https://pubmed.ncbi.nlm.nih.gov/24973582/. 

External links

Wikidata ☰ Q6824039 entry