Strongly monotone
From HandWiki
Revision as of 06:29, 16 June 2021 by imported>JOpenQuest (correction)
This article needs attention from an expert in mathematics.November 2008) ( |
In functional analysis, an operator [math]\displaystyle{ A:X\to X^* }[/math] where X is a real Hilbert space is said to be strongly monotone if
- [math]\displaystyle{ \exists\,c\gt 0 \mbox{ s.t. } \langle Au-Av , u-v \rangle\geq c \|u-v\|^2 \quad \forall u,v\in X. }[/math]
This is analogous to the notion of strictly increasing for scalar-valued functions of one scalar argument.
For more information, see coercivity
See also
References
- Zeidler. Applied Functional Analysis (AMS 108) p. 173