HandWiki:Math

From HandWiki
Revision as of 15:48, 16 May 2020 by AstroAI (talk | contribs) (cleaning)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search


Handwiki math.svg Mathematics

Mathematics (from Greek "knowledge, study, learning") includes the study of such topics as quantity (number theory), structure (algebra), space (geometry), and change (mathematical analysis).     [Add article].



List of Categories

0

Main topics

  1. 0 (number)
  2. 1 (number)
  3. 10 (number)
  4. 2 (number)
  5. 3 (number)
  6. 3-manifolds
  7. 4 (number)
  8. 5 (number)
  9. 6 (number)
  10. 7 (number)
  11. 8 (number)
  12. 9 (number)
  13. Abelian varieties
  14. Additive combinatorics
  15. Adjoint functors
  16. Amount of substance
  17. Analysis of algorithms
  18. Analysis of variance
  19. Analytic functions
  20. Applied mathematics
  21. Approximation algorithms
  22. Approximations
  23. Argument mapping
  24. Arithmetic
  25. Arithmetic functions
  26. Articles containing proofs
  27. Asymptotic analysis
  28. Automorphic forms
  29. Axiom of choice
  30. Banach spaces
  31. Bayesian estimation
  32. Bayesian inference
  33. Behavior selection algorithms
  34. Bilinear operators
  35. Binary arithmetic
  36. Binary operations
  37. Binary relations
  38. Boundary conditions
  39. Cache coherency
  40. Cardinal numbers
  41. Causal diagrams
  42. Chaotic maps
  43. Classes of prime numbers
  44. Classification algorithms
  45. Closure operators
  46. Clustering criteria
  47. Combinatorial algorithms
  48. Combinatorial optimization
  49. Combinatorics
  50. Compactness (mathematics)
  51. Complex analysis
  52. Complex dynamics
  53. Complex manifolds
  54. Complex numbers
  55. Complex surfaces
  56. Computational fields of study
  57. Computer arithmetic
  58. Conceptual modelling
  59. Conditionals
  60. Conformal mapping
  61. Conformal projections
  62. Conic sections
  63. Conjectures
  64. Conjugate prior distributions
  65. Connection (mathematics)
  66. Conservation equations
  67. Constructivism (mathematics)
  68. Continued fractions
  69. Continuous distributions
  70. Continuous integration
  71. Continuous mappings
  72. Continuous wavelets
  73. Convergence (mathematics)
  74. Convex analysis
  75. Convex optimization
  76. Coordinate systems
  77. Covariance and correlation
  78. Covering lemmas
  79. Curvature (mathematics)
  80. Cyclotomic fields
  81. Decomposition methods
  82. Definitions of mathematical integration
  83. Design of experiments
  84. Determinants
  85. Deterministic global optimization
  86. Dichotomies
  87. Differential calculus
  88. Differential equations
  89. Differential forms
  90. Differential operators
  91. Differentiation rules
  92. Digit-by-digit algorithms
  93. Dimension reduction
  94. Dimensionless numbers
  95. Diophantine equations
  96. Directed graphs
  97. Discrete distributions
  98. Discrete mathematics
  99. Discrete transforms
  100. Divergent series
  101. Division (mathematics)
  102. Divisor function
  103. Dynamical systems
  104. E (mathematical constant)
  105. Educational technology
  106. Elementary arithmetic
  107. Elementary mathematics
  108. Elementary shapes
  109. Elementary special functions
  110. Elliptic curves
  111. Elliptic functions
  112. Elliptic partial differential equations
  113. Enumerative combinatorics
  114. Equal-area projections
  115. Equations of fluid dynamics
  116. Equivalence (mathematics)
  117. Error detection and correction
  118. Errors and residuals
  119. Estimation of densities
  120. Euclidean symmetries
  121. Euclidean tilings
  122. Exchange algorithms
  123. Exponential family distributions
  124. Exponentials
  125. Factor analysis
  126. Factorial and binomial topics
  127. Fields of mathematics
  128. Finite automata
  129. Finite differences
  130. Finite element method
  131. Finite fields
  132. Finite rings
  133. First order methods
  134. Fixed points (mathematics)
  135. Forcing (mathematics)
  136. Formal sciences
  137. Formal systems
  138. Fourier analysis
  139. Fourier series
  140. Fractal curves
  141. Fractional calculus
  142. Fractions (mathematics)
  143. Frequency distribution
  144. Fréchet spaces
  145. Functional analysis
  146. Functional equations
  147. Functions and mappings
  148. Fuzzy logic
  149. Gambling terminology
  150. Gamma and related functions
  151. Gaussian function
  152. Generalizations of the derivative
  153. Generalized functions
  154. Generalized manifolds
  155. Generating functions
  156. Geodesic (mathematics)
  157. Glossaries of mathematics
  158. Glossary of areas of mathematics
  159. Gradient methods
  160. Graph algorithms
  161. Graph coloring
  162. Graph connectivity
  163. Graph data structures
  164. Graph drawing
  165. Graph enumeration
  166. Graph families
  167. Graph invariants
  168. Graph operations
  169. Graphical projections
  170. Harmonic analysis
  171. Harmonic functions
  172. Heraldic charges
  173. Hexadecimal numeral system
  174. Hierarchy of functions
  175. Higher-order functions
  176. Hilbert space
  177. Hilbert's problems
  178. Historical treatment of quaternions
  179. Homogeneous polynomials
  180. Homogeneous spaces
  181. Horizontal coordinate system
  182. Hypotheses
  183. Immediate inference
  184. Individual graphs
  185. Inequalities
  186. Information
  187. Integer factorization algorithms
  188. Integer sequences
  189. Integrable systems
  190. Integral calculus
  191. Integral equations
  192. Integral representations
  193. Integral transforms
  194. Integration on manifolds
  195. International System of Units
  196. Interpolation
  197. Intersection classes of graphs
  198. Invariant subspaces
  199. Inverse functions
  200. Irrational numbers
  201. Isogonal tilings
  202. Isohedral tilings
  203. Isotoxal tilings
  204. Knot invariants
  205. Knots and links
  206. Knowledge representation
  207. Lambda calculus
  208. Large cardinals
  209. Large integers
  210. Large numbers
  211. Lattice points
  212. Limit sets
  213. Limits (mathematics)
  214. Linear operators
  215. Linear operators in calculus
  216. Localization (mathematics)
  217. Logarithms
  218. Logic symbols
  219. Logical connectives
  220. Logical expressions
  221. Lorentzian manifolds
  222. Loss functions
  223. Lévy processes
  224. Map projections
  225. Maps of manifolds
  226. Markov chain Monte Carlo
  227. Markov models
  228. Markov processes
  229. Mathematical analysis
  230. Mathematical and quantitative methods (economics)
  231. Mathematical axioms
  232. Mathematical chemistry
  233. Mathematical concepts
  234. Mathematical constants
  235. Mathematical economics
  236. Mathematical identities
  237. Mathematical logic
  238. Mathematical methods in general relativity
  239. Mathematical modeling
  240. Mathematical morphology
  241. Mathematical notation
  242. Mathematical optimization
  243. Mathematical physics
  244. Mathematical principles
  245. Mathematical problems
  246. Mathematical proofs
  247. Mathematical relations
  248. Mathematical series
  249. Mathematical structures
  250. Mathematical symbols
  251. Mathematical tables
  252. Mathematical terminology
  253. Mathematical tools
  254. Mathematics
  255. Mathematics of infinitesimals
  256. Mathematics of rigidity
  257. Mathematics paradoxes
  258. Mathematics timelines
  259. Mathematics-related lists
  260. Matrix decompositions
  261. Matrix normal forms
  262. Measures of complexity
  263. Metric tensors
  264. Minimal surfaces
  265. Minkowski spacetime
  266. Modular arithmetic
  267. Modular forms
  268. Moment (mathematics)
  269. Monte Carlo methods
  270. Multiplication
  271. Multivariable calculus
  272. Multivariate continuous distributions
  273. Multivariate interpolation
  274. Necessity and sufficiency
  275. Non-Newtonian calculus
  276. Non-standard analysis
  277. Nonlinear functional analysis
  278. Nonlinear systems
  279. Normal distribution
  280. Norms (mathematics)
  281. Numeral systems
  282. Numerical analysis
  283. Numerical differential equations
  284. Numerical function drawing
  285. Obfuscation
  286. Operations research
  287. Optimal decisions
  288. Optimization algorithms and methods
  289. Ordinal numbers
  290. Ordinary differential equations
  291. Orthogonal coordinate systems
  292. Orthogonal polynomials
  293. Orthogonal wavelets
  294. Oscillation
  295. Parabolic partial differential equations
  296. Paradoxes of infinity
  297. Parametric families of graphs
  298. Parity (mathematics)
  299. Partial differential equations
  300. Paul Dirac
  301. Pentagrammic-order tilings
  302. Perfect graphs
  303. Permutations
  304. Planar graphs
  305. Point processes
  306. Poisson distribution
  307. Poisson point processes
  308. Polynomial functions
  309. Polynomials
  310. Positional numeral systems
  311. Prime numbers
  312. Problem structuring methods
  313. Propositional calculus
  314. Pseudorandomness
  315. Quadratic forms
  316. Quadratic irrational numbers
  317. Quadrilaterals
  318. Quality control tools
  319. Quantification
  320. Quasiregular polyhedra
  321. Quaternions
  322. Quotient objects
  323. Random graphs
  324. Random matrices
  325. Randomized algorithms
  326. Rational numbers
  327. Real analysis
  328. Real closed field
  329. Real numbers
  330. Real transcendental numbers
  331. Recurrence relations
  332. Regression analysis
  333. Regular graphs
  334. Regular tilings
  335. Riemann surfaces
  336. Riemannian manifolds
  337. Root-finding algorithms
  338. Rotation in three dimensions
  339. Rotational symmetry
  340. Rules of inference
  341. Runge–Kutta methods
  342. Scaling symmetries
  343. Scientific method
  344. Self-dual polyhedra
  345. Self-organization
  346. Semiregular tilings
  347. Separation axioms
  348. Sequence spaces
  349. Sequences and series
  350. Series expansions
  351. Set families
  352. Set indices on mathematics
  353. Sets of real numbers
  354. Several complex variables
  355. Shift-and-add algorithms
  356. Simplicial sets
  357. Singular integrals
  358. Singular value decomposition
  359. Smooth functions
  360. Smooth manifolds
  361. Sobolev spaces
  362. Sources of knowledge
  363. Spanning tree
  364. Sparse matrices
  365. Spatial data analysis
  366. Spatial gradient
  367. Spatial processes
  368. Special functions
  369. Spectral sequences
  370. Spherical trigonometry
  371. Splines (mathematics)
  372. Stable distributions
  373. Stochastic calculus
  374. Stochastic differential equations
  375. Stochastic models
  376. Stochastic processes
  377. Strongly regular graphs
  378. Structural analysis
  379. Structures on manifolds
  380. Summability methods
  381. Survival analysis
  382. Symmetric functions
  383. Symmetric relations
  384. Tensors in general relativity
  385. Ternary operations
  386. Three-dimensional coordinate systems
  387. Time domain analysis
  388. Time in science
  389. Transcendental numbers
  390. Transformation (function)
  391. Transforms
  392. Transitive relations
  393. Triangular tilings
  394. Trigonometric functions
  395. Trigonometry
  396. Types of databases
  397. Types of functions
  398. Unary operations
  399. Undecidable conjectures
  400. Unification (computer science)
  401. Unitary operators
  402. Units of area
  403. Units of energy
  404. Units of luminous intensity
  405. Units of plane angle
  406. Units of power
  407. Units of temperature
  408. Unsolved problems in mathematics
  409. Variants of random walks
  410. Variational analysis
  411. Variational principles
  412. Vector bundles
  413. Vector calculus
  414. Vector spaces
  415. Vectors (mathematics and physics)
  416. Vertical position
  417. Wiener process
  418. Zeta and L-functions

Theorems

  1. Automated theorem proving
  2. Central limit theorem
  3. Compactness theorems
  4. Fixed-point theorems
  5. Fundamental theorems
  6. Mathematical theorems
  7. Probability theorems
  8. Statistical mechanics theorems
  9. Statistical theorems
  10. Theorems about prime numbers
  11. Theorems in Fourier analysis
  12. Theorems in abstract algebra
  13. Theorems in algebra
  14. Theorems in algebraic geometry
  15. Theorems in algebraic number theory
  16. Theorems in algebraic topology
  17. Theorems in analysis
  18. Theorems in analytic number theory
  19. Theorems in approximation theory
  20. Theorems in calculus
  21. Theorems in combinatorics
  22. Theorems in complex analysis
  23. Theorems in complex geometry
  24. Theorems in computational complexity theory
  25. Theorems in convex geometry
  26. Theorems in differential geometry
  27. Theorems in differential topology
  28. Theorems in discrete mathematics
  29. Theorems in functional analysis
  30. Theorems in geometry
  31. Theorems in graph theory
  32. Theorems in group theory
  33. Theorems in harmonic analysis
  34. Theorems in linear algebra
  35. Theorems in measure theory
  36. Theorems in number theory
  37. Theorems in plane geometry
  38. Theorems in projective geometry
  39. Theorems in real analysis
  40. Theorems in representation theory
  41. Theorems in the foundations of mathematics
  42. Theorems in topology

Theories

  1. Abelian group theory
  2. Additive number theory
  3. Algebraic graph theory
  4. Algebraic number theory
  5. Analytic number theory
  6. Approximation theory
  7. Asymptotic theory (statistics)
  8. Axioms of set theory
  9. Basic concepts in infinite set theory
  10. Basic concepts in set theory
  11. Category theory
  12. Chaos theory
  13. Class field theory
  14. Classical control theory
  15. Coding theory
  16. Complex systems theory
  17. Computability theory
  18. Computational problems in graph theory
  19. Conformal field theory
  20. Continuum theory
  21. Descriptive set theory
  22. Dimension theory
  23. Elementary number theory
  24. Ergodic theory
  25. Estimation theory
  26. Experiment (probability theory)
  27. Extremal graph theory
  28. Field theory
  29. Galois theory
  30. Game theory
  31. Geometric graph theory
  32. Geometric group theory
  33. Graph minor theory
  34. Graph theory
  35. Graph theory objects
  36. Group theory
  37. Higher category theory
  38. Homology theory
  39. Homotopy theory
  40. Independence (probability theory)
  41. Infinite group theory
  42. Information theory
  43. Inner model theory
  44. Invariant theory
  45. Knot theory
  46. Large deviations theory
  47. Lattice theory
  48. Limits (category theory)
  49. Martingale theory
  50. Matrix theory
  51. Matroid theory
  52. Measure theory
  53. Measures (measure theory)
  54. Metatheory
  55. Model theory
  56. Module theory
  57. Network theory
  58. Number theory
  59. Objects (category theory)
  60. Operator theory
  61. Order theory
  62. Paradoxes of set theory
  63. Perturbation theory
  64. Probability theory
  65. Probability theory paradoxes
  66. Quantum information theory
  67. Queueing theory
  68. Ramsey theory
  69. Representation theory
  70. Representation theory of Lie algebras
  71. Representation theory of Lie groups
  72. Representation theory of finite groups
  73. Representation theory of groups
  74. Ring theory
  75. Scheme theory
  76. Semigroup theory
  77. Set theory
  78. Sheaf theory
  79. Singularity theory
  80. Spectral theory
  81. Squares in number theory
  82. Stability theory
  83. Statistical theory
  84. String theory
  85. Structural complexity theory
  86. Summability theory
  87. Systems of set theory
  88. Systems theory
  89. Theorems in algebraic number theory
  90. Theorems in analytic number theory
  91. Theorems in approximation theory
  92. Theorems in computational complexity theory
  93. Theorems in graph theory
  94. Theorems in group theory
  95. Theorems in measure theory
  96. Theorems in number theory
  97. Theorems in representation theory
  98. Theory of computation
  99. Theory of probability distributions
  100. Topological graph theory
  101. Topos theory
  102. Trees (graph theory)
  103. Type theory
  104. Unitary representation theory

Algebra

  1. Abstract algebra
  2. Algebra of random variables
  3. Algebraic combinatorics
  4. Algebraic curves
  5. Algebraic geometry
  6. Algebraic graph theory
  7. Algebraic groups
  8. Algebraic homogeneous spaces
  9. Algebraic logic
  10. Algebraic number theory
  11. Algebraic numbers
  12. Algebraic structures
  13. Algebraic surfaces
  14. Algebraic topology
  15. Algebraic varieties
  16. Banach algebras
  17. Boolean algebra
  18. C-algebras
  19. Clifford algebras
  20. Commutative algebra
  21. Composition algebras
  22. Computer algebra
  23. Diagram algebras
  24. Differential algebra
  25. Elementary algebra
  26. Exceptional Lie algebras
  27. Free algebraic structures
  28. Geometric algebra
  29. Homological algebra
  30. Hopf algebras
  31. Lie algebras
  32. Linear algebra
  33. Linear algebraic groups
  34. Multilinear algebra
  35. Non-associative algebra
  36. Non-associative algebras
  37. Nonlinear algebra
  38. Numerical linear algebra
  39. Ockham algebras
  40. Operator algebras
  41. Real algebraic geometry
  42. Representation theory of Lie algebras
  43. Theorems in abstract algebra
  44. Theorems in algebra
  45. Theorems in algebraic geometry
  46. Theorems in algebraic number theory
  47. Theorems in algebraic topology
  48. Theorems in linear algebra
  49. Topological methods of algebraic geometry
  50. Universal algebra
  51. Von Neumann algebras

Statistics

  1. Applied probability
  2. Asymptotic theory (statistics)
  3. Bayesian statistics
  4. Computational statistics
  5. Directional statistics
  6. Experiment (probability theory)
  7. Functions related to probability distributions
  8. Independence (probability theory)
  9. Infinitely divisible probability distributions
  10. Location-scale family probability distributions
  11. Logic and statistics
  12. Multivariate statistics
  13. Nonparametric statistics
  14. Parametric statistics
  15. Probabilistic arguments
  16. Probabilistic inequalities
  17. Probability
  18. Probability and statistics
  19. Probability assessment
  20. Probability interpretations
  21. Probability problems
  22. Probability theorems
  23. Probability theory
  24. Probability theory paradoxes
  25. Robust statistics
  26. Sampling (statistics)
  27. Statistical algorithms
  28. Statistical approximations
  29. Statistical data types
  30. Statistical deviation and dispersion
  31. Statistical hypothesis testing
  32. Statistical inference
  33. Statistical mechanics theorems
  34. Statistical methods
  35. Statistical paradoxes
  36. Statistical parameters
  37. Statistical randomness
  38. Statistical ratios
  39. Statistical theorems
  40. Statistical theory
  41. Statistics
  42. Statistics-related lists
  43. Summary statistics
  44. Theory of probability distributions
  45. Types of probability distributions

Geometry

  1. Affine geometry
  2. Algebraic geometry
  3. Analytic geometry
  4. Arithmetic geometry
  5. Arithmetic problems of plane geometry
  6. Birational geometry
  7. Classical geometry
  8. Computational geometry
  9. Conformal geometry
  10. Contact geometry
  11. Convex geometry
  12. Coordinate systems in differential geometry
  13. Differential geometry
  14. Differential geometry of surfaces
  15. Diophantine geometry
  16. Discrete geometry
  17. Elementary geometry
  18. Euclidean geometry
  19. Euclidean plane geometry
  20. Euclidean solid geometry
  21. Finite geometry
  22. Geometric algebra
  23. Geometric algorithms
  24. Geometric centers
  25. Geometric graph theory
  26. Geometric graphs
  27. Geometric group theory
  28. Geometric inequalities
  29. Geometric measurement
  30. Geometric shapes
  31. Geometric topology
  32. Geometry of divisors
  33. Geometry of numbers
  34. Geometry processing
  35. Hyperbolic geometry
  36. Hypergeometric functions
  37. Incidence geometry
  38. Metric geometry
  39. Multi-dimensional geometry
  40. Non-Euclidean geometry
  41. Noncommutative geometry
  42. Orientation (geometry)
  43. Projective geometry
  44. Real algebraic geometry
  45. Riemannian geometry
  46. Special hypergeometric functions
  47. Spherical geometry
  48. Symplectic geometry
  49. Theorems in algebraic geometry
  50. Theorems in complex geometry
  51. Theorems in convex geometry
  52. Theorems in differential geometry
  53. Theorems in geometry
  54. Theorems in plane geometry
  55. Theorems in projective geometry
  56. Topological methods of algebraic geometry
  57. Triangle geometry
  58. Triangulation (geometry)

Topology

  1. Algebraic topology
  2. Computational topology
  3. Differential topology
  4. General topology
  5. Geometric topology
  6. Properties of topological spaces
  7. Symplectic topology
  8. Theorems in algebraic topology
  9. Theorems in differential topology
  10. Theorems in topology
  11. Topological graph theory
  12. Topological groups
  13. Topological methods of algebraic geometry
  14. Topological spaces
  15. Topological vector spaces
  16. Topology of Lie groups
  17. Topology of function spaces
  18. Trees (topology)

Groups

  1. Abelian group theory
  2. Algebraic groups
  3. Discrete groups
  4. Finite groups
  5. Functional subgroups
  6. Geometric group theory
  7. Group theory
  8. Infinite group theory
  9. Kleinian groups
  10. Lie groups
  11. Linear algebraic groups
  12. Ordered groups
  13. Permutation groups
  14. Properties of groups
  15. Quantum groups
  16. Representation theory of Lie groups
  17. Representation theory of finite groups
  18. Representation theory of groups
  19. Semigroup theory
  20. Solvable groups
  21. Sporadic groups
  22. Subgroup properties
  23. Theorems in group theory
  24. Topological groups
  25. Topology of Lie groups