Chemistry:8-Aminoquinoline

From HandWiki
8-Aminoquinoline
8-aminoquinoline.svg
Names
Preferred IUPAC name
Quinolin-8-amine
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
UNII
Properties
C9H8N2
Molar mass 144.177 g·mol−1
Appearance pale yellow solid
Density 1.337 g/cm3[1]
Melting point 65 °C (149 °F; 338 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

8-Aminoquinoline is the 8-amino derivative of quinoline. Often abbreviated AQ, it is a pale yellow solid. It is structurally analogous to 8-hydroxyquinoline.[2]

Drug derivatives

The derivatives primaquine, tafenoquine and pamaquine have been tested for anti-malaria activity.[3][4] Primaquine is still used routinely worldwide as part of the treatment of Plasmodium vivax and Plasmodium ovale malaria, although how it prevents malarial recurrences is not, at present, clear.[5] Tafenoquine was approved for medical use in Australia and in the United States in 2018.[6][7]

Directing group

The amine functional group is amenable to formation of amides, and thus can serve as a directing group in organic synthesis.[8][9]

Preparation

The original synthesis of AQ involved nitration of quinoline to give a mixture of the 5- and 8-nitroderivatives, which were separated by distillation and sublimation. Reduction of the 8-nitro isomer with tin powder in the presence of hydrochloric acid gave the amines.[10] AQ can also be produced by amination of 8-chloroquinoline.

References

  1. Van Meervelt, L.; Goethals, M.; Leroux, N.; Zeegers-Huyskens, Th. (1997). "X-ray and vibrational studies of 8-aminoquinoline. Evidence for a three-center hydrogen bond". Journal of Physical Organic Chemistry 10 (9): 680–686. doi:10.1002/(SICI)1099-1395(199709)10:9<680::AID-POC902>3.0.CO;2-Y. 
  2. Rej, Supriya; Ano, Yusuke; Chatani, Naoto (2020). "Bidentate Directing Groups: An Efficient Tool in C–H Bond Functionalization Chemistry for the Expedient Construction of C–C Bonds". Chemical Reviews 120 (3): 1788–1887. doi:10.1021/acs.chemrev.9b00495. PMID 31904219. 
  3. Nqoro, Xhamla; Tobeka, Naki; Aderibigbe, Blessing (2017). "Quinoline-Based Hybrid Compounds with Antimalarial Activity". Molecules 22 (12): 2268. doi:10.3390/molecules22122268. PMID 29257067. 
  4. Sweeney AW; Blackburn CRB; KH Rieckmann (1 August 2004). "Short report: The activity of pamaquine, an 8-aminoquinoline drug, against sporozoite-induced infections of Plasmodium vivax (New Guinea strains)". Am J Trop Med Hyg 71 (2): 187–189. doi:10.4269/ajtmh.2004.71.2.0700187. PMID 15306708. http://www.ajtmh.org/cgi/content/full/71/2/187. 
  5. Markus, MB (2023). "Putative contribution of 8-aminoquinolines to preventing recrudescence of malaria". Tropical Medicine and Infectious Disease 8 (5): 278. doi:10.3390/tropicalmed8050278. PMID 37235326. 
  6. "Guidance for Using Tafenoquine for Prevention and Antirelapse Therapy for Malaria — United States, 2019". MMWR. Morbidity and Mortality Weekly Report 68 (46): 1062–1068. November 2019. doi:10.15585/mmwr.mm6846a4. PMID 31751320. PMC 6871897. https://www.cdc.gov/mmwr/volumes/68/wr/pdfs/mm6846a4-H.pdf. 
  7. Hounkpatin, Aurore B; Kreidenweiss, Andrea; Held, Jana (March 2019). "Clinical utility of tafenoquine in the prevention of relapse of Plasmodium vivax malaria: a review on the mode of action and emerging trial data". Infection and Drug Resistance 12: 553–570. doi:10.2147/IDR.S151031. PMID 30881061. 
  8. Daugulis, Olafs; Roane, James; Tran, Ly Dieu (2015). "Bidentate, Monoanionic Auxiliary-Directed Functionalization of Carbon–Hydrogen Bonds". Accounts of Chemical Research 48 (4): 1053–1064. doi:10.1021/ar5004626. PMID 25756616. 
  9. Corbet, Matthieu; De Campo, Floryan (2013). "8-Aminoquinoline: A Powerful Directing Group in Metal-Catalyzed Direct Functionalization of C-H Bonds". Angewandte Chemie International Edition 52 (38): 9896–9898. doi:10.1002/anie.201303556. PMID 23939922. 
  10. Kaufmann, Adolf; Zeller, Otto (1917). "Über Nitro-amino-chinoline". Berichte der Deutschen Chemischen Gesellschaft 50 (2): 1626–1630. doi:10.1002/cber.19170500264. https://zenodo.org/record/2004918.