Complete Fermi–Dirac integral

From HandWiki
Short description: Mathematical integral

In mathematics, the complete Fermi–Dirac integral, named after Enrico Fermi and Paul Dirac, for an index is defined by

Fj(x)=1Γ(j+1)0tjetx+1dt,(j>1)

This equals

Lij+1(ex),

where Lis(z) is the polylogarithm.

Its derivative is

dFj(x)dx=Fj1(x),

and this derivative relationship is used to define the Fermi-Dirac integral for nonpositive indices j. Differing notation for Fj appears in the literature, for instance some authors omit the factor 1/Γ(j+1). The definition used here matches that in the NIST DLMF.

Special values

The closed form of the function exists for j = 0:

F0(x)=ln(1+exp(x)).

For x = 0, the result reduces to

Fj(0)=η(j+1),

where η is the Dirichlet eta function.

See also

References

  • "3.411.3." (in English). Table of Integrals, Series, and Products (8 ed.). Academic Press, Inc.. 2015. p. 355. ISBN:978-0-12-384933-5. ISBN 978-0-12-384933-5. 
  • R.B.Dingle (1957). Fermi-Dirac Integrals. Appl.Sci.Res. B6. pp. 225–239.