Pöschl–Teller potential

From HandWiki

In mathematical physics, a Pöschl–Teller potential, named after the physicists Herta Pöschl[1] (credited as G. Pöschl) and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.

Definition

In its symmetric form is explicitly given by[2]

Symmetric Pöschl–Teller potential: λ(λ+1)2sech2(x). It shows the eigenvalues for μ=1, 2, 3, 4, 5, 6.
V(x)=λ(λ+1)2sech2(x)

and the solutions of the time-independent Schrödinger equation

12ψ(x)+V(x)ψ(x)=Eψ(x)

with this potential can be found by virtue of the substitution u=tanh(x), which yields

[(1u2)ψ(u)]+λ(λ+1)ψ(u)+2E1u2ψ(u)=0.

Thus the solutions ψ(u) are just the Legendre functions Pλμ(tanh(x)) with E=μ22, and λ=1,2,3, μ=1,2,,λ1,λ. Moreover, eigenvalues and scattering data can be explicitly computed.[3] In the special case of integer λ, the potential is reflectionless and such potentials also arise as the N-soliton solutions of the Korteweg–De Vries equation.[4]

The more general form of the potential is given by[2]

V(x)=λ(λ+1)2sech2(x)ν(ν+1)2csch2(x).

Rosen–Morse potential

A related potential is given by introducing an additional term:[5]

V(x)=λ(λ+1)2sech2(x)gtanhx.

See also

References list

  1. ""Edward Teller Biographical Memoir." by Stephen B. Libby and Andrew M. Sessler, 2009 (published in Edward Teller Centennial Symposium: modern physics and the scientific legacy of Edward Teller, World Scientific, 2010.". https://e-reports-ext.llnl.gov/pdf/376159.pdf. 
  2. 2.0 2.1 Pöschl, G.; Teller, E. (1933). "Bemerkungen zur Quantenmechanik des anharmonischen Oszillators". Zeitschrift für Physik 83 (3–4): 143–151. doi:10.1007/BF01331132. Bibcode1933ZPhy...83..143P. 
  3. Siegfried Flügge Practical Quantum Mechanics (Springer, 1998)
  4. Lekner, John (2007). "Reflectionless eigenstates of the sech2 potential". American Journal of Physics 875 (12): 1151–1157. doi:10.1119/1.2787015. Bibcode2007AmJPh..75.1151L. 
  5. Barut, A. O.; Inomata, A.; Wilson, R. (1987). "Algebraic treatment of second Poschl-Teller, Morse-Rosen and Eckart equations" (in en). Journal of Physics A: Mathematical and General 20 (13): 4083. doi:10.1088/0305-4470/20/13/017. ISSN 0305-4470. Bibcode1987JPhA...20.4083B. http://stacks.iop.org/0305-4470/20/i=13/a=017.