Versatile Video Coding

From HandWiki
Short description: Video compression standard
VVC / H.266 / MPEG-I Part 3
Versatile video coding
Versatile Video Coding (logo).svg
StatusIn force
Year started2017
First published2020
Latest version2nd Edition
29 April 2022
OrganizationITU-T, ISO, IEC
CommitteeSG16 (Secretary: Simao Campos) (VCEG), MPEG
Base standardsH.261, H.262, H.263, H.264, H.265, MPEG-1
DomainVideo compression
LicenseRAND
Websitewww.itu.int/rec/T-REC-H.266

Versatile Video Coding (VVC), also known as H.266,[1] ISO/IEC 23090-3,[2] and MPEG-I Part 3, is a video compression standard finalized on 6 July 2020, by the Joint Video Experts Team (JVET),[3] a joint video expert team of the VCEG working group of ITU-T Study Group 16 and the MPEG working group of ISO/IEC JTC 1/SC 29. It is the successor to High Efficiency Video Coding (HEVC, also known as ITU-T H.265 and MPEG-H Part 2). It was developed with two primary goals – improved compression performance and support for a very broad range of applications.[4][5][6]

Concept

In October 2015, the MPEG and VCEG formed the Joint Video Exploration Team (JVET) to evaluate available compression technologies and study the requirements for a next-generation video compression standard. The new standard has about 50% better compression rate for the same perceptual quality compared to HEVC,[7] with support for lossless and subjectively lossless compression. It supports resolutions ranging from very low resolution up to 4K and 16K as well as 360° videos. VVC supports YCbCr 4:4:4, 4:2:2 and 4:2:0 with 8–10 bits per component, BT.2100 wide color gamut and high dynamic range (HDR) of more than 16 stops (with peak brightness of 1,000, 4,000 and 10,000 nits), auxiliary channels (for depth, transparency, etc.), variable and fractional frame rates from 0 to 120 Hz and higher, scalable video coding for temporal (frame rate), spatial (resolution), SNR, color gamut and dynamic range differences, stereo/multiview coding, panoramic formats, and still-picture coding. Work on high bit depth support (12 to 16 bits per component) started in October 2020[8] and was included in the second edition published in 2022. Encoding complexity of several times (up to ten times) that of HEVC is expected, depending on the quality of the encoding algorithm (which is outside the scope of the standard). The decoding complexity is about twice that of HEVC.

VVC development has been made using the VVC Test Model (VTM), a reference software codebase that was started with a minimal set of coding tools. Further coding tools have been added after being tested in Core Experiments (CEs). Its predecessor was the Joint Exploration Model (JEM), an experimental software codebase that was based on the reference software used for HEVC.

History

JVET issued a final Call for Proposals in October 2017, and the standardization process officially began in April 2018 when the first working draft of the standard was produced.[9][10]

At IBC 2018, a preliminary implementation based on VVC was demonstrated that was said to compress video 40% more efficiently than HEVC.[11]

The content of the final standard was approved on 6 July 2020.[7][12][13]

Schedule

  • October 2017: Call for Proposals
  • April 2018: Evaluation of the proposals received and first draft of the standard[14]
  • July 2019: Ballot issued for Committee Draft
  • October 2019: Ballot issued for Draft International Standard
  • 6 July 2020: Completion of final standard

Licensing

To reduce the risk of the problems seen when licensing HEVC implementations, for VVC a new group called the Media Coding Industry Forum (MC-IF) was founded.[15][16] However, MC-IF had no power over the standardization process, which was based on technical merit as determined by consensus decisions of JVET.[17]

Four companies were initially vying to be patent pool administrators for VVC, in a situation similar to the previous AVC[18] and HEVC[19] codecs. Two companies later formed patent pools: Access Advance and MPEG LA (now known as Via-LA).[20]

Access Advance published their licensing fee in April 2021.[21] Via-LA published their licensing fee in January 2022.[22]

Companies known not to be a part of the Access Advance or Via-LA patent pools as of November 2023 are: Apple, Canon, Ericsson, Fraunhofer, Google, Huawei, Humax, Intel, LG, Interdigital, Maxell, Microsoft, Oppo, Qualcomm, Samsung, Sharp and Sony.

Adoption

Software

Encoders/decoders

Players

Hardware

Company Chip / Architecture Type Throughput Ref
Allegro DVT AL-D320 Decoder IP core 8K@120 [33][34]
MediaTek Pentonic 2000 Decoder 8K@120 [35]
Pentonic 1000 Decoder 4K@144 [36]
Pentonic 700 Decoder 4K@144 [37]
Realtek RTD1319D Set-top box SoC 4K@60 [38]
VeriSilicon Hantro VC9000D Decoder 8K@120 [39]
Hantro VC9800D Decoder [40]

Broadcast

The Brazilian SBTVD Forum will adopt the MPEG-I VVC codec in its forthcoming broadcast television system, TV 3.0, expected to launch in 2024. It will be used alongside MPEG-5 LCEVC as a video base layer encoder for broadcast and broadband delivery.[41]

The European organization DVB Project, which governs digital television broadcasting standards, announced 24 February 2022 that VVC was now part of its tools for broadcasting.[42] The DVB tuner specification used throughout Europe, Australia, and many other regions has been revised to support the VVC (H.266) video codec, the successor to HEVC.[43]

See also

Notes

  1. License withholds patent rights and is not OSI-approved.

References

  1. "H.266: Versatile video coding". https://www.itu.int/rec/T-REC-H.266. 
  2. "Information technology — Coded representation of immersive media — Part 3: Versatile video coding" (in en). September 2022. https://www.iso.org/standard/83531.html. Retrieved 2021-02-16. 
  3. "JVET - Joint Video Experts Team". https://www.itu.int/en/ITU-T/studygroups/2017-2020/16/Pages/video/jvet.aspx. 
  4. Bross, Benjamin; Chen, Jianle; Ohm, Jens-Rainer; Sullivan, Gary J.; Wang, Ye-Kui (September 2021). "Developments in International Video Coding Standardization After AVC, With an Overview of Versatile Video Coding (VVC)". Proceedings of the IEEE 109 (9): 1463–1493. doi:10.1109/JPROC.2020.3043399. 
  5. Bross, Benjamin; Wang, Ye-Kui; Ye, Yan; Liu, Shan; Sullivan, Gary J.; Ohm, Jens-Rainer (October 2021). "Overview of the Versatile Video Coding (VVC) Standard and its Applications". IEEE Trans. Circuits & Systs. For Video Technol. 31 (10): 3736–3764. doi:10.1109/TCSVT.2021.3101953. 
  6. Boyce, Jill M.; Chen, Jianle; Liu, Shan; Ohm, Jens-Rainer; Sullivan, Gary J.; Wiegand, Thomas; Ye, Yan; Zhu, Wenwu (October 2021). "Guest Editorial Introduction to the Special Section on the VVC Standard". IEEE Trans. Circuits & Systs. For Video Technol. 31 (10): 3731–3735. doi:10.1109/TCSVT.2021.3111712. 
  7. 7.0 7.1 "Fraunhofer HHI is proud to present the new state-of-the-art in global video coding: H.266/VVC brings video transmission to new speeds". July 6, 2020. https://newsletter.fraunhofer.de/-viewonline2/17386/465/11/14SHcBTt/V44RELLZBp/1. 
  8. "AHG12: VVC coding tool evaluation for high bit-depth coding". http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?id=10466. 
  9. "N17195, Joint Call for Proposals on Video Compression with Capability beyond HEVC". https://mpeg.chiariglione.org/standards/exploration/future-video-coding/n17195-joint-call-proposals-video-compression-capability. 
  10. "N17669, Working Draft 1 of Versatile Video Coding". https://mpeg.chiariglione.org/standards/mpeg-i/versatilevideo-coding/n17669-working-draft-1-versatile-video-coding. 
  11. "Fraunhofer Institut zeigt 50% besseren HEVC Nachfolger VVC auf der // IBC 2018" (in de). https://www.slashcam.de/news/single/Fraunhofer-Institut-zeigt-50--besseren-HEVC-Nachfo-14589.html. 
  12. "Versatile Video Coding | MPEG". https://mpeg.chiariglione.org/standards/mpeg-i/versatile-video-coding. 
  13. ITU (2018-04-27). "Beyond HEVC: Versatile Video Coding project starts strongly in Joint Video Experts Team" (in en). https://news.itu.int/versatile-video-coding-project-starts-strongly/. 
  14. "JVET-J1001: Versatile Video Coding (Draft 1)". April 2018. http://phenix.int-evry.fr/jvet/doc_end_user/current_document.php?id=3538. 
  15. Ozer, Jan (2019-01-13). "A Video Codec Licensing Update". http://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=129386. 
  16. "MC-IF" (in en). http://www.mc-if.org/. 
  17. Feldman, Christian (7 May 2019). "Video Engineering Summit East 2019 – AV1/VVC Update". New York. http://streamingmedia.brightcovegallery.com/detail/videos/video-engineering-summit-east-2019/video/6036724771001/ves104.-av1-vvc-update. "No change to the standardization has been done, so it could theoretically happen that the same thing with HEVC happens again. No measures have been done to prevent that, unfortunately. Also, JVET is not directly responsible; they are just a technical committee. (…) There is the Media Coding Industry Forum (…), but they don't have any real power." 
  18. Siglin, Timothy (2009-02-12). "The H.264 Licensing Labyrinth" (in en-US). https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=65403. 
  19. Ozer, Jan (2020-01-17). "Balance of Power Shifts Among HEVC Patent Pools" (in en-US). https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=136123. 
  20. Ozer, Jan (28 January 2021). "VVC Patent Pools: And Then There Were Two" (in en). https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=144949. 
  21. "access advance royalties". https://accessadvance.com/hevc-advance-patent-pool-detailed-royalty-rates/. 
  22. "via-la licensing fees". https://www.via-la.com/licensing-2/vvc/vvc-license-fees/. 
  23. "Fraunhofer HHI has developed a software encoder that fully exploits the compression potential of VVC. Its source code is available on GitHub." (in en). https://www.hhi.fraunhofer.de/en/departments/vca/technologies-and-solutions/h266-vvc/fraunhofer-versatile-video-encoder-vvenc.html. 
  24. "Fraunhofer HHI has developed a resource efficient, multithreaded VVC software decoder that enables live decoding. Its source code is available on GitHub." (in en). https://www.hhi.fraunhofer.de/en/departments/vca/technologies-and-solutions/h266-vvc/fraunhofer-versatile-video-decoder-vvdec.html. 
  25. Tencent (2021-06-22). "High performance Real-time H.266/VVC decoder now available from Tencent Media Lab" (in en). Tencent. https://multimedia.tencent.com/news/202102011. 
  26. Tencent (2021-07-16). "Tencent Cloud Becomes First Cloud Service Provider to Support H.266/VVC Standard". https://intl.cloud.tencent.com/dynamic/news-details/100152. 
  27. "git.ffmpeg.org Git - ffmpeg.git/commit". https://git.ffmpeg.org/gitweb/ffmpeg.git/commit/301ed950d1c3c500d0c2eee8472587dc5e691c04. 
  28. "Spin Digital – 8K VVC Media Player (Spin Player VVC)" (in en-US). Spin Digital. https://spin-digital.com/products/spin-player-vvc/. 
  29. "MX Player cuts down video streaming data consumption by half; upgrades its video encoding and compression technology to H.266" (in en). 2021-06-15. https://www.businessinsider.in/advertising/brands/news/mx-player-cuts-down-video-streaming-data-consumption-by-half-upgrades-its-video-encoding-and-compression-technology-to-h-266/articleshow/83537037.cms. 
  30. "How the H.266 video standard will help stream content way faster" (in en). 2021-09-07. https://thenextweb.com/news/h266-vvc-video-codec-streaming-standards. 
  31. "Free Video Player for Mac with M1/M2 Support - Download Elmedia Player" (in en). https://www.elmedia-video-player.com/. 
  32. Rudd, Emilia. "Elmedia Player for Mac Version History | KB" (in en). https://help.electronic.us/support/solutions/articles/44002280353-elmedia-player-from-the-electronic-team-website. 
  33. "IP Decoder AV1 8K IP Video Multiformats AV1 422 Scalable" (in en-US). Allegro DVT - Leading Video Compression Expertise. https://www.allegrodvt.com/video-ip-compliance-streams/video-silicon-ip-cores/ip-decoder-multi-formats-8k-d320/. 
  34. "First hardware VVC/H.266 video decoder IP core" (in en). 2021-07-01. https://www.eenewseurope.com/news/first-hardware-vvch266-video-decoder-ip-core. 
  35. MediaTek. "MediaTek Announces New Pentonic Smart TV Family with New Pentonic 2000 for Flagship 8K 120Hz TVs". www.prnewswire.com (Press release). Retrieved 2021-11-20.
  36. de Looper, Christian (2022-11-10). "MediaTek wants to power next-generation TVs and Chromebooks". https://bgr.com/tech/mediatek-wants-to-power-your-next-tv/. 
  37. Roy, Avik (2022-08-20). "MediaTek launches Pentonic 700 chip for 4K televisions". https://technosports.co.in/2022/08/20/mediatek-launches-pentonic-700/. 
  38. "Realtek Launches World's First 4K UHD Set-top Box SoC (RTD1319D) Supports VVC/H.266 Video Decoding, GPU with 10-bit Graphics, Multiple CAS, and HDMI 2.1a". 2022-08-29. https://www.realtek.com/en/press-room/news-releases/item/realtek-launches-world-s-first-4k-uhd-set-top-box-soc-rtd1319d. 
  39. "VeriSilicon delivered multi-format hardware video decoder Hantro VC9000D supporting 8K@120FPS VVC/H.266 to customers". https://www.verisilicon.com/en/PressRelease/HantroVC9000D. 
  40. "Hantro VC9800D". https://www.verisilicon.com/en/IPPortfolio/HantroVC9800D. 
  41. "Brazilian SBTVD Forum Selects V-Nova LCEVC for Brazil's Upcoming TV 3.0". 2022-01-13. https://www.digitalmediaworld.tv/broadcast/4118-brazilian-sbtvd-forum-selects-v-nova-lcevc-for-brazil-s-upcoming-tv-3-0. 
  42. "DVB adds the VVC (H.266) codec to its video standards, for 8K?". 2022-02-24. https://www.avcaesar.com/news/1781/dvb-adds-the-vvc-h266-codec-to-its-video-standards-for-8k. 
  43. "Next-gen video codec VVC (H.266) added to DVB tuner specification". 2022-02-28. https://www.flatpanelshd.com/news.php?subaction=showfull&id=1646046959. 

Further reading

External links