HandWiki:Analysis

From HandWiki SandBox

Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from structured and unstructured data. It covers data analysis, data mining and visualization.


40px Analysis portal

Find here a list of categories organized by topics and a list of new articles submitted to this portal.

+ Add a new article



List of categories

0

Main topics

  1. Academic disciplines
  2. Academic publishing
  3. Accreditation
  4. Accuracy and precision
  5. Actuarial science
  6. Application-specific graphs
  7. Applications of Bayesian inference
  8. Artificial intelligence
  9. Autocorrelation
  10. Bayesian estimation
  11. Bayesian inference
  12. Binary trees
  13. Biorthogonal wavelets
  14. Calculus of variations
  15. Causal inference
  16. Change detection
  17. Chart overlays
  18. Choice modelling
  19. Circuit complexity
  20. Citation metrics
  21. Classical control theory
  22. Cognitive science
  23. Cohort studies
  24. Cohort study methods
  25. Color names
  26. Computational complexity theory
  27. Computational fields of study
  28. Computational resources
  29. Conjugate prior distributions
  30. Continuous wavelets
  31. Covariance and correlation
  32. Cybernetics
  33. Decimal time
  34. Decision trees
  35. Decision-making
  36. Decision-making paradoxes
  37. Design of experiments
  38. Detection theory
  39. Dewey Decimal Classification
  40. Dimension reduction
  41. Econometrics
  42. Encyclopedias of science
  43. Entropy and information
  44. Eprint archives
  45. Error detection and correction
  46. Errors and residuals
  47. Estimation methods
  48. Estimation of densities
  49. Estimation theory
  50. Evaluation methods
  51. Evidence-based practices
  52. Exploration
  53. Field research
  54. Financial charts
  55. Flow visualization
  56. Forensic disciplines
  57. Formal sciences
  58. Free online encyclopedias
  59. Gambling terminology
  60. Generalizations
  61. Generalized linear models
  62. Globally Harmonized System
  63. Graph drawing
  64. Graph rewriting
  65. Graphical models
  66. ISO 9660 extensions
  67. ISO standards
  68. Identity paradoxes
  69. Image noise reduction techniques
  70. Image processing
  71. Imagination
  72. Index numbers
  73. Inductive fallacies
  74. Inductive reasoning
  75. Infographics
  76. Informal estimation
  77. Information
  78. Information retrieval techniques
  79. Information science
  80. International standards
  81. Interpolation
  82. Inverse problems
  83. Laboratory techniques
  84. Least squares
  85. Library cataloging and classification
  86. Library of Congress Classification
  87. Likelihood
  88. Lists of colors
  89. Log-linear models
  90. Logarithmic scales of measurement
  91. Logical paradoxes
  92. Loss functions
  93. M-estimators
  94. Markov chain Monte Carlo
  95. Markov models
  96. Martingale theory
  97. Mathematical and quantitative methods (economics)
  98. Mathematical modeling
  99. Mathematics of computing
  100. Matrix decompositions
  101. Maximum likelihood estimation
  102. Measure theory
  103. Measurement
  104. Measures (measure theory)
  105. Metatheorems
  106. Method engineering
  107. Metric geometry
  108. Metric system
  109. Model selection
  110. Modeling and simulation
  111. Monte Carlo methods
  112. Monte Carlo methods in finance
  113. Multidimensional signal processing
  114. Multiple comparisons
  115. Multivariate time series
  116. Natural sciences
  117. Nautical charts
  118. Normal distribution
  119. Numeral systems
  120. Open science
  121. Open-source artificial intelligence
  122. Optimal decisions
  123. Orders of magnitude
  124. Orders of magnitude (length)
  125. Orders of magnitude (time)
  126. Orders of magnitude (volume)
  127. Orthogonal wavelets
  128. Outlines of sciences
  129. Pattern formation
  130. Pattern matching
  131. Pattern recognition
  132. Percolation theory
  133. Photographic techniques
  134. Pictograms
  135. Plots (graphics)
  136. Point estimation performance
  137. Prediction
  138. Primary colors
  139. Problem solving
  140. Problem solving methods
  141. Problem solving skills
  142. Problem structuring methods
  143. Pseudorandom number generators
  144. Qualitative research
  145. Quality assurance
  146. Quality control
  147. Quality control tools
  148. Quality management
  149. Rainbow colors
  150. Reporting guidelines
  151. Research methods
  152. Research methods journals
  153. Risk management
  154. Rules of thumb
  155. SI base quantities
  156. SI prefixes
  157. Sampling techniques
  158. Scale modeling
  159. Scholarly search services
  160. Science occupations
  161. Scientific classification
  162. Scientific disciplines
  163. Scientific documents
  164. Scientific method
  165. Scientific modeling
  166. Scientific techniques
  167. Search trees
  168. Secondary colors
  169. Semi-parametric models
  170. Shades of blue
  171. Shades of brown
  172. Shades of color
  173. Shades of cyan
  174. Shades of gray
  175. Shades of green
  176. Shades of magenta
  177. Shades of orange
  178. Shades of pink
  179. Shades of red
  180. Shades of violet
  181. Shades of white
  182. Shades of yellow
  183. Signal estimation
  184. Signal processing
  185. Similarity and distance measures
  186. Simultaneous equation methods (econometrics)
  187. Single-equation methods (econometrics)
  188. Specialized encyclopedias
  189. Stable sorts
  190. Stochastic models
  191. Stochastic processes
  192. Structural functionalism
  193. Structured prediction
  194. Systems thinking
  195. Technology forecasting
  196. Temporal rates
  197. Theorems in measure theory
  198. Theory of constraints
  199. Thought experiments
  200. Time series
  201. Time series models
  202. Types of analytics
  203. Variance reduction
  204. Visualization (graphic)
  205. W.Krisher and R.Bock
  206. Web analytics

Algorithms

  1. Algorithmic inference
  2. Algorithms
  3. Algorithms and data structures
  4. Analysis of algorithms
  5. Behavior selection algorithms
  6. Cluster analysis algorithms
  7. FFT algorithms
  8. Filter theory
  9. Linear filters
  10. Mathematical optimization
  11. Nonlinear filters
  12. Number theoretic algorithms
  13. Randomized algorithms

Data handling

  1. Algorithms and data structures
  2. Biometric databases
  3. Categorical data
  4. Computer data
  5. Data analysis
  6. Data collection
  7. Data mining
  8. Data modeling
  9. Data modeling diagrams
  10. Data modeling languages
  11. Data processing
  12. Data publishing
  13. Data types
  14. Data visualization
  15. Data-flow analysis
  16. Datasets in machine learning
  17. Exploratory data analysis
  18. Extreme value data
  19. Geometric data structures
  20. Missing data
  21. Panel data
  22. Probabilistic data structures
  23. Public domain databases
  24. Scientific databases
  25. Statistical data sets
  26. Statistical data transformation
  27. Statistical data types
  28. Summary statistics for categorical data
  29. Trees (data structures)

Analysis

  1. Analysis of algorithms
  2. Analysis of variance
  3. Asymptotic analysis
  4. Cluster analysis
  5. Cluster analysis algorithms
  6. Computable analysis
  7. Control-flow analysis
  8. Cross-sectional analysis
  9. Data analysis
  10. Data-flow analysis
  11. Decision analysis
  12. Dimensional analysis
  13. Exploratory data analysis
  14. Frequency-domain analysis
  15. Hazard analysis
  16. Instrumental analysis
  17. Meta-analysis
  18. Multiple-criteria decision analysis
  19. Nonlinear time series analysis
  20. Numerical analysis
  21. Regression analysis
  22. Reliability analysis
  23. Risk analysis
  24. Sensitivity analysis
  25. Statistical analysis
  26. Survival analysis
  27. Systems analysis
  28. Time domain analysis
  29. Time–frequency analysis

Statistics

  1. Applied statistics
  2. Asymptotic theory (statistics)
  3. Bayesian statistics
  4. Categorical regression models
  5. Characterization of probability distributions
  6. Computational statistics
  7. Conditional probability
  8. Descriptive statistics
  9. Engineering statistics
  10. Exotic probabilities
  11. Experiment (probability theory)
  12. Logistic regression
  13. Nonparametric Bayesian statistics
  14. Nonparametric regression
  15. Nonparametric statistics
  16. Normality tests
  17. Parametric statistics
  18. Probabilistic data structures
  19. Probabilistic inequalities
  20. Probability
  21. Probability distribution fitting
  22. Probability distributions
  23. Probability distributions with non-finite variance
  24. Probability theorems
  25. Regression analysis
  26. Regression diagnostics
  27. Regression models
  28. Regression variable selection
  29. Regression with time series structure
  30. Resampling (statistics)
  31. Robust regression
  32. Robust statistics
  33. Sample statistics
  34. Sampling (statistics)
  35. Scale statistics
  36. Stability (probability)
  37. Statistical analysis
  38. Statistical approximations
  39. Statistical charts and diagrams
  40. Statistical classification
  41. Statistical data sets
  42. Statistical data transformation
  43. Statistical data types
  44. Statistical deviation and dispersion
  45. Statistical distance
  46. Statistical forecasting
  47. Statistical hypothesis testing
  48. Statistical inequalities
  49. Statistical inference
  50. Statistical intervals
  51. Statistical laws
  52. Statistical models
  53. Statistical outliers
  54. Statistical principles
  55. Statistical process control
  56. Statistical randomness
  57. Statistical ratios
  58. Statistical signal processing
  59. Statistical tests
  60. Statistical tests for contingency tables
  61. Statistical theory
  62. Statistics
  63. Summary statistics
  64. Summary statistics for categorical data
  65. Theory of probability distributions
  66. Time series statistical tests
  67. U-statistics
  68. Validity (statistics)

Machine learning

  1. Artificial neural networks
  2. Bayesian networks
  3. Datasets in machine learning
  4. Deep learning
  5. Learning management systems
  6. Machine learning
  7. Neural networks
  8. Reinforcement learning
  9. Unsupervised learning

Units

  1. Conversion of units of measurement
  2. Customary units of measurement in the United States
  3. Imperial units
  4. International System of Units
  5. Natural units
  6. Non-SI metric units
  7. Obsolete units of measurement
  8. SI base units
  9. SI derived units
  10. UCUM base units
  11. Units of amount
  12. Units of area
  13. Units of length
  14. Units of measurement
  15. Units of measurement in astronomy