HandWiki:Math

From HandWiki SandBox

Mathematics (from Greek "knowledge, study, learning") includes the study of such topics as quantity (number theory), structure (algebra), space (geometry), and change (mathematical analysis). This portal covers all branches of pure (number theory, algebra, arithmetic, combinatorics, topology, mathematical analysis) and applied (calculus, statistics, set theory, trigonometry) mathematics.


45px Portal of mathematics

Find here a list of categories organized by topics and a list of new articles submitted to this portal.

+ Add a new article



List of categories

0

Main topics

  1. 0 (number)
  2. 1 (number)
  3. 10 (number)
  4. 10-polytopes
  5. 2 (number)
  6. 3 (number)
  7. 3-manifolds
  8. 4 (number)
  9. 4-manifolds
  10. 4-polytopes
  11. 5 (number)
  12. 5-polytopes
  13. 6 (number)
  14. 6-polytopes
  15. 7 (number)
  16. 7-polytopes
  17. 8 (number)
  18. 9 (number)
  19. 9-polytopes
  20. Abelian varieties
  21. Additive combinatorics
  22. Additive functions
  23. Adjoint functors
  24. Analysis of variance
  25. Analytic functions
  26. Apeirogonal tilings
  27. Aperiodic tilings
  28. Applied mathematics
  29. Approximation algorithms
  30. Approximations
  31. Archimedean solids
  32. Argument mapping
  33. Arithmetic
  34. Arithmetic functions
  35. Articles containing proofs
  36. Asymptotic analysis
  37. Automorphic forms
  38. Axiom of choice
  39. Banach spaces
  40. Bayesian estimation
  41. Bayesian inference
  42. Behavior selection algorithms
  43. Bilinear operators
  44. Binary arithmetic
  45. Binary operations
  46. Binary relations
  47. Boundary conditions
  48. Cache coherency
  49. Cardinal numbers
  50. Catalan solids
  51. Causal diagrams
  52. Chaotic maps
  53. Characteristic classes
  54. Classes of prime numbers
  55. Classification algorithms
  56. Closure operators
  57. Clustering criteria
  58. Cohomology theories
  59. Combinatorial algorithms
  60. Combinatorial optimization
  61. Combinatorics
  62. Combinatory logic
  63. Compactification (mathematics)
  64. Compactness (mathematics)
  65. Complex analysis
  66. Complex distributions
  67. Complex dynamics
  68. Complex manifolds
  69. Complex numbers
  70. Complex surfaces
  71. Computational fields of study
  72. Computer arithmetic
  73. Conceptual modelling
  74. Conditionals
  75. Conformal mapping
  76. Conformal mappings
  77. Conformal projections
  78. Conic sections
  79. Conjectures
  80. Conjugate prior distributions
  81. Connection (mathematics)
  82. Conservation equations
  83. Constructible polygons
  84. Constructivism (mathematics)
  85. Continued fractions
  86. Continuous distributions
  87. Continuous integration
  88. Continuous mappings
  89. Continuous wavelets
  90. Convergence (mathematics)
  91. Convex analysis
  92. Convex hull algorithms
  93. Convex optimization
  94. Coordinate systems
  95. Covariance and correlation
  96. Covering lemmas
  97. Curvature (mathematics)
  98. Cyclotomic fields
  99. Decomposition methods
  100. Definitions of mathematical integration
  101. Deltahedra
  102. Design of experiments
  103. Determinants
  104. Deterministic global optimization
  105. Dichotomies
  106. Differential calculus
  107. Differential equations
  108. Differential forms
  109. Differential operators
  110. Differential systems
  111. Differentiation rules
  112. Digit-by-digit algorithms
  113. Dimension reduction
  114. Dimensionless numbers
  115. Diophantine approximation
  116. Diophantine equations
  117. Directed graphs
  118. Discrete distributions
  119. Discrete mathematics
  120. Discrete transforms
  121. Divergent series
  122. Division (mathematics)
  123. Divisor function
  124. Domain decomposition methods
  125. Dynamical systems
  126. E (mathematical constant)
  127. Educational technology
  128. Elementary arithmetic
  129. Elementary mathematics
  130. Elementary shapes
  131. Elementary special functions
  132. Elliptic curves
  133. Elliptic functions
  134. Elliptic partial differential equations
  135. Enumerative combinatorics
  136. Equal-area projections
  137. Equations of fluid dynamics
  138. Equivalence (mathematics)
  139. Error detection and correction
  140. Errors and residuals
  141. Estimation of densities
  142. Euclidean symmetries
  143. Euclidean tilings
  144. Exchange algorithms
  145. Exponential family distributions
  146. Exponentials
  147. Factor analysis
  148. Factorial and binomial topics
  149. Fibonacci numbers
  150. Field (mathematics)
  151. Fields of mathematics
  152. Finite automata
  153. Finite differences
  154. Finite element method
  155. Finite fields
  156. Finite rings
  157. First order methods
  158. Fixed points (mathematics)
  159. Forcing (mathematics)
  160. Formal sciences
  161. Formal systems
  162. Formal theories of arithmetic
  163. Foundations of mathematics
  164. Fourier analysis
  165. Fourier series
  166. Fractal curves
  167. Fractional calculus
  168. Fractions (mathematics)
  169. Frequency distribution
  170. Fréchet spaces
  171. Function prefixes
  172. Function spaces
  173. Functional analysis
  174. Functional calculus
  175. Functional equations
  176. Functions and mappings
  177. Fuzzy logic
  178. Gambling terminology
  179. Gamma and related functions
  180. Gaussian function
  181. Gaussian quadratures
  182. Generalizations
  183. Generalizations of the derivative
  184. Generalized convexity
  185. Generalized functions
  186. Generalized manifolds
  187. Generating functions
  188. Geodesic (mathematics)
  189. Glossaries of mathematics
  190. Glossary of areas of mathematics
  191. Goldberg polyhedra
  192. Golden ratio
  193. Gradient methods
  194. Grandi's series
  195. Graph algorithms
  196. Graph coloring
  197. Graph connectivity
  198. Graph data structures
  199. Graph drawing
  200. Graph enumeration
  201. Graph families
  202. Graph invariants
  203. Graph operations
  204. Graphical projections
  205. Hamiltonian paths and cycles
  206. Hardy spaces
  207. Harmonic analysis
  208. Harmonic functions
  209. Heptagonal tilings
  210. Heptagrammic tilings
  211. Heraldic charges
  212. Hexadecimal numeral system
  213. Hexagonal tilings
  214. Hierarchy of functions
  215. Higher-order functions
  216. Hilbert space
  217. Hilbert's problems
  218. Historical treatment of quaternions
  219. History of mathematics
  220. Homeomorphisms
  221. Homogeneous polynomials
  222. Homogeneous spaces
  223. Horizontal coordinate system
  224. Hyperbolic knots and links
  225. Hyperbolic partial differential equations
  226. Hyperbolic tilings
  227. Hypercomplex numbers
  228. Hypergraphs
  229. Immediate inference
  230. Individual graphs
  231. Inequalities
  232. Infinite graphs
  233. Infinite-order tilings
  234. Information
  235. Integer factorization algorithms
  236. Integer sequences
  237. Integrable systems
  238. Integral calculus
  239. Integral equations
  240. Integral representations
  241. Integral transforms
  242. Integration on manifolds
  243. Interpolation
  244. Intersection classes of graphs
  245. Invariant subspaces
  246. Inverse functions
  247. Irrational numbers
  248. Isochoric 3-honeycombs
  249. Isogonal 3-honeycombs
  250. Isogonal tilings
  251. Isohedral tilings
  252. Isotoxal tilings
  253. Iterated function system fractals
  254. Johnson solids
  255. Knot invariants
  256. Knots and links
  257. Knowledge representation
  258. Lambda calculus
  259. Laplace transforms
  260. Large cardinals
  261. Large integers
  262. Large numbers
  263. Lattice points
  264. Lattice-based cryptography
  265. Legendre polynomials
  266. Limit sets
  267. Limits (mathematics)
  268. Linear logic
  269. Linear operators
  270. Linear operators in calculus
  271. Lists of integrals
  272. Lists of shapes
  273. Lists of units of measurement
  274. Localization (mathematics)
  275. Logarithms
  276. Logic symbols
  277. Logical connectives
  278. Logical expressions
  279. Lorentzian manifolds
  280. Loss functions
  281. Lévy processes
  282. Magic squares
  283. Map projections
  284. Maps of manifolds
  285. Markov chain Monte Carlo
  286. Markov models
  287. Markov processes
  288. Mathematical analysis
  289. Mathematical and quantitative methods (economics)
  290. Mathematical axioms
  291. Mathematical classification systems
  292. Mathematical concepts
  293. Mathematical constants
  294. Mathematical databases
  295. Mathematical economics
  296. Mathematical identities
  297. Mathematical induction
  298. Mathematical logic
  299. Mathematical markup languages
  300. Mathematical methods in general relativity
  301. Mathematical modeling
  302. Mathematical morphology
  303. Mathematical notation
  304. Mathematical optimization
  305. Mathematical paradoxes
  306. Mathematical physics
  307. Mathematical principles
  308. Mathematical problems
  309. Mathematical proofs
  310. Mathematical relations
  311. Mathematical series
  312. Mathematical structures
  313. Mathematical symbols
  314. Mathematical tables
  315. Mathematical terminology
  316. Mathematical tools
  317. Mathematics
  318. Mathematics books
  319. Mathematics education
  320. Mathematics journals
  321. Mathematics of infinitesimals
  322. Mathematics of rigidity
  323. Mathematics paradoxes
  324. Mathematics timelines
  325. Mathematics websites
  326. Mathematics-related lists
  327. Matrix decompositions
  328. Matrix normal forms
  329. Measures of complexity
  330. Meromorphic functions
  331. Metric tensors
  332. Minimal surfaces
  333. Minkowski spacetime
  334. Modular arithmetic
  335. Modular forms
  336. Moment (mathematics)
  337. Monte Carlo methods
  338. Multiplication
  339. Multivariable calculus
  340. Multivariate continuous distributions
  341. Multivariate interpolation
  342. Necessity and sufficiency
  343. Non-Newtonian calculus
  344. Non-standard analysis
  345. Non-standard positional numeral systems
  346. Nonconvex polyhedra
  347. Nonlinear functional analysis
  348. Nonlinear systems
  349. Nonstandard analysis
  350. Normal distribution
  351. Norms (mathematics)
  352. Numeral systems
  353. Numerical analysis
  354. Numerical differential equations
  355. Numerical function drawing
  356. Numerical integration
  357. Numerical integration (quadrature)
  358. Obfuscation
  359. Operations research
  360. Optimal decisions
  361. Optimization algorithms and methods
  362. Optimization in vector spaces
  363. Optimization of ordered sets
  364. Order-2 tilings
  365. Order-3-n 3-honeycombs
  366. Order-4 tilings
  367. Order-4-n 3-honeycombs
  368. Order-5 tilings
  369. Order-5-n 3-honeycombs
  370. Order-6 tilings
  371. Order-6-n 3-honeycombs
  372. Order-7 tilings
  373. Order-7-n 3-honeycombs
  374. Order-8-n 3-honeycombs
  375. Order-n-2 3-honeycombs
  376. Order-n-3 3-honeycombs
  377. Order-n-4 3-honeycombs
  378. Order-n-5 3-honeycombs
  379. Order-n-6 3-honeycombs
  380. Order-n-7 3-honeycombs
  381. Order-n-8 3-honeycombs
  382. Ordinal numbers
  383. Ordinary differential equations
  384. Orthogonal coordinate systems
  385. Orthogonal polynomials
  386. Orthogonal wavelets
  387. Oscillation
  388. Parabolic partial differential equations
  389. Paradoxes of infinity
  390. Parametric families of graphs
  391. Parity (mathematics)
  392. Partial differential equations
  393. Pentagonal tilings
  394. Pentagrammic-order tilings
  395. Perfect graphs
  396. Permutation patterns
  397. Permutations
  398. Pi algorithms
  399. Planar graphs
  400. Planar surfaces
  401. Platonic solids
  402. Point processes
  403. Poisson distribution
  404. Poisson point processes
  405. Polyhedral combinatorics
  406. Polyhedral compounds
  407. Polynomial functions
  408. Polynomials
  409. Positional numeral systems
  410. Prime numbers
  411. Prismatoid polyhedra
  412. Problem structuring methods
  413. Propositional calculus
  414. Pseudorandomness
  415. Pyramids and bipyramids
  416. Quadratic forms
  417. Quadratic irrational numbers
  418. Quadratic residue
  419. Quadrilaterals
  420. Quality control tools
  421. Quantification
  422. Quasiregular polyhedra
  423. Quaternions
  424. Quotient objects
  425. Random graphs
  426. Random matrices
  427. Randomized algorithms
  428. Rational functions
  429. Rational numbers
  430. Real analysis
  431. Real closed field
  432. Real numbers
  433. Real transcendental numbers
  434. Recurrence relations
  435. Regression analysis
  436. Regular 3-honeycombs
  437. Regular graphs
  438. Regular polyhedra
  439. Regular tessellations
  440. Regular tilings
  441. Riemann surfaces
  442. Riemannian manifolds
  443. Root-finding algorithms
  444. Rotation in three dimensions
  445. Rotational symmetry
  446. Rules of inference
  447. Runge–Kutta methods
  448. Scaling symmetries
  449. Scientific method
  450. Self-dual polyhedra
  451. Self-dual tilings
  452. Self-organization
  453. Semiregular tilings
  454. Separation axioms
  455. Sequence spaces
  456. Sequences and series
  457. Series expansions
  458. Set families
  459. Set indices on mathematics
  460. Sets of real numbers
  461. Several complex variables
  462. Shift-and-add algorithms
  463. Simplicial sets
  464. Singular integrals
  465. Singular value decomposition
  466. Smooth functions
  467. Smooth manifolds
  468. Snub tilings
  469. Sobolev spaces
  470. Sources of knowledge
  471. Space-filling polyhedra
  472. Spanning tree
  473. Sparse matrices
  474. Spatial data analysis
  475. Spatial gradient
  476. Spatial processes
  477. Special functions
  478. Spectral sequences
  479. Spherical trigonometry
  480. Spiric sections
  481. Splines (mathematics)
  482. Square tilings
  483. Stable distributions
  484. Star polygons
  485. Stochastic calculus
  486. Stochastic differential equations
  487. Stochastic models
  488. Stochastic processes
  489. Strongly regular graphs
  490. Structural analysis
  491. Structures on manifolds
  492. Summability methods
  493. Survival analysis
  494. Symmetric functions
  495. Symmetric relations
  496. Ternary operations
  497. Theta functions
  498. Three-dimensional coordinate systems
  499. Time domain analysis
  500. Time in science
  501. Transcendental numbers
  502. Transfer functions
  503. Transformation (function)
  504. Transforms
  505. Transitive relations
  506. Triangles of numbers
  507. Triangular tilings
  508. Trigonometric functions
  509. Trigonometry
  510. Truncated tilings
  511. Two-dimensional coordinate systems
  512. Types of databases
  513. Types of functions
  514. Unary operations
  515. Undecidable conjectures
  516. Unification (computer science)
  517. Uniform polyhedra
  518. Uniform spaces
  519. Uniform tilings
  520. Unitary operators
  521. Units of area
  522. Units of luminous intensity
  523. Units of plane angle
  524. Units of power
  525. Unsolved problems in mathematics
  526. Variables (mathematics)
  527. Variants of random walks
  528. Variational analysis
  529. Variational principles
  530. Vector bundles
  531. Vector calculus
  532. Vector spaces
  533. Vectors (mathematics and physics)
  534. Vertical position
  535. Wiener process
  536. Zeta and L-functions
  537. Δ-hyperbolic space

Theorems

  1. Automated theorem proving
  2. Central limit theorem
  3. Compactness theorems
  4. Fixed-point theorems
  5. Fundamental theorems
  6. Isomorphism theorems
  7. Mathematical theorems
  8. Probability theorems
  9. Statistical theorems
  10. Theorems about prime numbers
  11. Theorems in Fourier analysis
  12. Theorems in Riemannian geometry
  13. Theorems in abstract algebra
  14. Theorems in algebra
  15. Theorems in algebraic geometry
  16. Theorems in algebraic number theory
  17. Theorems in algebraic topology
  18. Theorems in analysis
  19. Theorems in analytic number theory
  20. Theorems in approximation theory
  21. Theorems in calculus
  22. Theorems in combinatorics
  23. Theorems in complex analysis
  24. Theorems in complex geometry
  25. Theorems in computational complexity theory
  26. Theorems in convex geometry
  27. Theorems in differential geometry
  28. Theorems in differential topology
  29. Theorems in discrete geometry
  30. Theorems in discrete mathematics
  31. Theorems in functional analysis
  32. Theorems in geometry
  33. Theorems in graph theory
  34. Theorems in group theory
  35. Theorems in harmonic analysis
  36. Theorems in linear algebra
  37. Theorems in measure theory
  38. Theorems in number theory
  39. Theorems in plane geometry
  40. Theorems in projective geometry
  41. Theorems in real analysis
  42. Theorems in representation theory
  43. Theorems in statistics
  44. Theorems in the foundations of mathematics
  45. Theorems in topology
  46. Theorems regarding stochastic processes

Theories

  1. Abelian group theory
  2. Additive number theory
  3. Algebraic K-theory
  4. Algebraic graph theory
  5. Algebraic number theory
  6. Analytic number theory
  7. Approximation theory
  8. Asymptotic theory (statistics)
  9. Axioms of set theory
  10. Basic concepts in infinite set theory
  11. Basic concepts in set theory
  12. Bifurcation theory
  13. Category theory
  14. Chaos theory
  15. Class field theory
  16. Classical control theory
  17. Coding theory
  18. Combinatorial game theory
  19. Complex systems theory
  20. Computability theory
  21. Computational number theory
  22. Computational problems in graph theory
  23. Conformal field theory
  24. Continuum theory
  25. Density functional theory
  26. Descriptive set theory
  27. Dimension theory
  28. Effective descriptive set theory
  29. Elementary number theory
  30. Ergodic theory
  31. Estimation theory
  32. Experiment (probability theory)
  33. Extremal graph theory
  34. Field theory
  35. Free probability theory
  36. Galois theory
  37. Game theory
  38. Geometric graph theory
  39. Geometric group theory
  40. Geometric transversal theory
  41. Graph minor theory
  42. Graph theory
  43. Graph theory objects
  44. Group theory
  45. Hidden variable theory
  46. Higher category theory
  47. Homology theory
  48. Homotopy theory
  49. Independence (probability theory)
  50. Infinite group theory
  51. Information theory
  52. Inner model theory
  53. Intersection theory
  54. Invariant theory
  55. Knot theory
  56. Large deviations theory
  57. Lattice theory
  58. Limits (category theory)
  59. Martingale theory
  60. Matching (graph theory)
  61. Matrix theory
  62. Matroid theory
  63. Measure theory
  64. Measures (measure theory)
  65. Metatheory
  66. Model theory
  67. Module theory
  68. Network theory
  69. Number theory
  70. Objects (category theory)
  71. Operator theory
  72. Order theory
  73. Paradoxes of naive set theory
  74. Paradoxes of set theory
  75. Perturbation theory
  76. Probability theory
  77. Probability theory paradoxes
  78. Queueing theory
  79. Ramsey theory
  80. Representation theory
  81. Representation theory of Lie algebras
  82. Representation theory of Lie groups
  83. Representation theory of algebraic groups
  84. Representation theory of finite groups
  85. Representation theory of groups
  86. Ring theory
  87. Scheme theory
  88. Semigroup theory
  89. Set theory
  90. Sheaf theory
  91. Singularity theory
  92. Spectral theory
  93. Squares in number theory
  94. Stability theory
  95. Statistical theory
  96. Structural complexity theory
  97. Summability theory
  98. Surgery theory
  99. Systems of set theory
  100. Systems theory
  101. Theorems in algebraic number theory
  102. Theorems in analytic number theory
  103. Theorems in approximation theory
  104. Theorems in computational complexity theory
  105. Theorems in graph theory
  106. Theorems in group theory
  107. Theorems in measure theory
  108. Theorems in number theory
  109. Theorems in representation theory
  110. Theory of computation
  111. Theory of probability distributions
  112. Topological graph theory
  113. Topos theory
  114. Trees (graph theory)
  115. Type theory
  116. Unitary representation theory

Algebra

  1. Abstract algebra
  2. Algebra of random variables
  3. Algebraic K-theory
  4. Algebraic combinatorics
  5. Algebraic curves
  6. Algebraic geometry
  7. Algebraic graph theory
  8. Algebraic groups
  9. Algebraic homogeneous spaces
  10. Algebraic logic
  11. Algebraic number theory
  12. Algebraic numbers
  13. Algebraic structures
  14. Algebraic surfaces
  15. Algebraic topology
  16. Algebraic varieties
  17. Banach algebras
  18. Boolean algebra
  19. C-algebras
  20. Clifford algebras
  21. Commutative algebra
  22. Composition algebras
  23. Computer algebra
  24. Diagram algebras
  25. Differential algebra
  26. Elementary algebra
  27. Exceptional Lie algebras
  28. Free algebraic structures
  29. Geometric algebra
  30. Homological algebra
  31. Hopf algebras
  32. Lie algebras
  33. Linear algebra
  34. Linear algebraic groups
  35. Multilinear algebra
  36. Non-associative algebra
  37. Non-associative algebras
  38. Nonlinear algebra
  39. Numerical linear algebra
  40. Ockham algebras
  41. Operator algebras
  42. Properties of Lie algebras
  43. Real algebraic geometry
  44. Representation theory of Lie algebras
  45. Representation theory of algebraic groups
  46. Super linear algebra
  47. Theorems in abstract algebra
  48. Theorems in algebra
  49. Theorems in algebraic geometry
  50. Theorems in algebraic number theory
  51. Theorems in algebraic topology
  52. Theorems in linear algebra
  53. Topological algebra
  54. Topological methods of algebraic geometry
  55. Universal algebra
  56. Von Neumann algebras

Statistics

  1. Applied probability
  2. Asymptotic theory (statistics)
  3. Bayesian statistics
  4. Biostatistics journals
  5. Computational statistics
  6. Computational statistics journals
  7. Directional statistics
  8. Experiment (probability theory)
  9. Free probability theory
  10. Functions related to probability distributions
  11. Independence (probability theory)
  12. Infinitely divisible probability distributions
  13. Location-scale family probability distributions
  14. Logic and statistics
  15. Multivariate statistics
  16. Nonparametric statistics
  17. Parametric statistics
  18. Probabilistic arguments
  19. Probabilistic inequalities
  20. Probability
  21. Probability and statistics
  22. Probability assessment
  23. Probability bounds analysis
  24. Probability fallacies
  25. Probability interpretations
  26. Probability problems
  27. Probability theorems
  28. Probability theory
  29. Probability theory paradoxes
  30. Robust statistics
  31. Sampling (statistics)
  32. Statistical algorithms
  33. Statistical approximations
  34. Statistical data types
  35. Statistical deviation and dispersion
  36. Statistical hypothesis testing
  37. Statistical inference
  38. Statistical methods
  39. Statistical paradoxes
  40. Statistical parameters
  41. Statistical randomness
  42. Statistical ratios
  43. Statistical theorems
  44. Statistical theory
  45. Statistics
  46. Statistics journals
  47. Statistics-related lists
  48. Summary statistics
  49. Tails of probability distributions
  50. Theorems in statistics
  51. Theory of probability distributions
  52. Types of probability distributions

Geometry

  1. Affine geometry
  2. Algebraic geometry
  3. Analytic geometry
  4. Arithmetic geometry
  5. Arithmetic problems of plane geometry
  6. Birational geometry
  7. Classical geometry
  8. Computational geometry
  9. Configurations (geometry)
  10. Conformal geometry
  11. Contact geometry
  12. Convex geometry
  13. Coordinate systems in differential geometry
  14. Descriptive geometry
  15. Differential geometry
  16. Differential geometry of surfaces
  17. Diophantine geometry
  18. Discrete geometry
  19. Elementary geometry
  20. Euclidean geometry
  21. Euclidean plane geometry
  22. Euclidean solid geometry
  23. Finite geometry
  24. Four-dimensional geometry
  25. Geometric algebra
  26. Geometric algorithms
  27. Geometric centers
  28. Geometric dissection
  29. Geometric graph theory
  30. Geometric graphs
  31. Geometric group theory
  32. Geometric inequalities
  33. Geometric measurement
  34. Geometric shapes
  35. Geometric topology
  36. Geometric transversal theory
  37. Geometry of divisors
  38. Geometry of numbers
  39. Geometry processing
  40. Honeycombs (geometry)
  41. Hyperbolic geometry
  42. Hypergeometric functions
  43. Incidence geometry
  44. Integral geometry
  45. Metric geometry
  46. Multi-dimensional geometry
  47. Non-Euclidean geometry
  48. Noncommutative geometry
  49. Orientation (geometry)
  50. Projective geometry
  51. Real algebraic geometry
  52. Riemannian geometry
  53. Special hypergeometric functions
  54. Spherical geometry
  55. Symplectic geometry
  56. Systolic geometry
  57. Theorems in Riemannian geometry
  58. Theorems in algebraic geometry
  59. Theorems in complex geometry
  60. Theorems in convex geometry
  61. Theorems in differential geometry
  62. Theorems in discrete geometry
  63. Theorems in geometry
  64. Theorems in plane geometry
  65. Theorems in projective geometry
  66. Topological methods of algebraic geometry
  67. Triangle geometry
  68. Triangulation (geometry)

Topology

  1. Algebraic topology
  2. Computational topology
  3. Differential topology
  4. General topology
  5. Geometric topology
  6. Properties of topological spaces
  7. Symplectic topology
  8. Theorems in algebraic topology
  9. Theorems in differential topology
  10. Theorems in topology
  11. Topological algebra
  12. Topological graph theory
  13. Topological groups
  14. Topological methods of algebraic geometry
  15. Topological spaces
  16. Topological vector spaces
  17. Topology of Lie groups
  18. Topology of function spaces
  19. Topology of homogeneous spaces
  20. Trees (topology)

Groups

  1. Abelian group theory
  2. Algebraic groups
  3. Braid groups
  4. Coxeter groups
  5. Discrete groups
  6. Finite groups
  7. Functional subgroups
  8. Geometric group theory
  9. Group actions (mathematics)
  10. Group theory
  11. Infinite group theory
  12. Kleinian groups
  13. Lie groups
  14. Linear algebraic groups
  15. Ordered groups
  16. Permutation groups
  17. Properties of groups
  18. Quantum groups
  19. Representation theory of Lie groups
  20. Representation theory of algebraic groups
  21. Representation theory of finite groups
  22. Representation theory of groups
  23. Semigroup theory
  24. Solvable groups
  25. Sporadic groups
  26. Subgroup properties
  27. Theorems in group theory
  28. Topological groups
  29. Topology of Lie groups