Bender–Dunne polynomials

From HandWiki

In mathematics, Bender–Dunne polynomials are a two-parameter family of sequences of orthogonal polynomials studied by Carl M. Bender and Gerald V. Dunne.[1][2] They may be defined by the recursion:

P0(x)=1,
P1(x)=x ,

and for n>1:

Pn(x)=xPn1(x)+16(n1)(nJ1)(n+2s2)Pn2(x)

where J and s are arbitrary parameters.

References

  1. Bender, Carl M.; Dunne, Gerald V. (1988). "Polynomials and operator orderings". Journal of Mathematical Physics 29 (8): 1727–1731. doi:10.1063/1.527869. ISSN 0022-2488. Bibcode1988JMP....29.1727B. 
  2. Bender, Carl M.; Dunne, Gerald V. (1996). "Quasi-exactly solvable systems and orthogonal polynomials". Journal of Mathematical Physics 37 (1): 6–11. doi:10.1063/1.531373. ISSN 0022-2488. Bibcode1996JMP....37....6B.