HandWiki:Math

From HandWiki
Jump to: navigation, search

Mathematics (from Greek "knowledge, study, learning") includes the study of such topics as quantity (number theory), structure (algebra), space (geometry), and change (mathematical analysis). This portal covers all branches of pure (number theory, algebra, arithmetic, combinatorics, topology, mathematical analysis) and applied (calculus, statistics, set theory, trigonometry) mathematics.


Handwiki math.svg Portal of mathematics

Find here a list of categories organized by topics and a list of new articles submitted to this portal.

+ Add a new article



List of categories

0

Main topics

  1. 0 (number)
  2. 1 (number)
  3. 10 (number)
  4. 10-polytopes
  5. 1000 (number)
  6. 10000 (number)
  7. 11 (number)
  8. 2 (number)
  9. 3 (number)
  10. 3-manifolds
  11. 4 (number)
  12. 4-manifolds
  13. 4-polytopes
  14. 5 (number)
  15. 5-polytopes
  16. 6 (number)
  17. 6-polytopes
  18. 7 (number)
  19. 7-polytopes
  20. 8 (number)
  21. 9 (number)
  22. 9-polytopes
  23. Abelian varieties
  24. Additive combinatorics
  25. Additive functions
  26. Adjoint functors
  27. Analysis of variance
  28. Analytic functions
  29. Apeirogonal tilings
  30. Aperiodic tilings
  31. Applied mathematics
  32. Approximation algorithms
  33. Approximations
  34. Archimedean solids
  35. Argument mapping
  36. Arithmetic
  37. Arithmetic functions
  38. Articles containing proofs
  39. Asymptotic analysis
  40. Automorphic forms
  41. Axiom of choice
  42. Banach spaces
  43. Bayesian estimation
  44. Bayesian inference
  45. Behavior selection algorithms
  46. Bilinear operators
  47. Binary arithmetic
  48. Binary operations
  49. Binary relations
  50. Boundary conditions
  51. Cache coherency
  52. Cardinal numbers
  53. Catalan solids
  54. Causal diagrams
  55. Chaotic maps
  56. Characteristic classes
  57. Classes of prime numbers
  58. Classification algorithms
  59. Closure operators
  60. Clustering criteria
  61. Cohomology theories
  62. Combinatorial algorithms
  63. Combinatorial optimization
  64. Combinatorics
  65. Combinatory logic
  66. Compactification (mathematics)
  67. Compactness (mathematics)
  68. Complex analysis
  69. Complex distributions
  70. Complex dynamics
  71. Complex manifolds
  72. Complex numbers
  73. Complex surfaces
  74. Computational fields of study
  75. Computer arithmetic
  76. Conceptual modelling
  77. Conditionals
  78. Conformal mapping
  79. Conformal mappings
  80. Conformal projections
  81. Conic sections
  82. Conjectures
  83. Conjugate prior distributions
  84. Connection (mathematics)
  85. Conservation equations
  86. Constructible polygons
  87. Constructivism (mathematics)
  88. Continued fractions
  89. Continuous distributions
  90. Continuous integration
  91. Continuous mappings
  92. Continuous wavelets
  93. Convergence (mathematics)
  94. Convex analysis
  95. Convex hull algorithms
  96. Convex optimization
  97. Coordinate systems
  98. Covariance and correlation
  99. Covering lemmas
  100. Curvature (mathematics)
  101. Cyclotomic fields
  102. Decomposition methods
  103. Definitions of mathematical integration
  104. Deltahedra
  105. Design of experiments
  106. Determinants
  107. Deterministic global optimization
  108. Dichotomies
  109. Differential calculus
  110. Differential equations
  111. Differential forms
  112. Differential operators
  113. Differential systems
  114. Differentiation rules
  115. Digit-by-digit algorithms
  116. Dimension reduction
  117. Dimensionless numbers
  118. Diophantine approximation
  119. Diophantine equations
  120. Directed graphs
  121. Discrete distributions
  122. Discrete mathematics
  123. Discrete transforms
  124. Divergent series
  125. Division (mathematics)
  126. Divisor function
  127. Domain decomposition methods
  128. Dynamical systems
  129. E (mathematical constant)
  130. Educational technology
  131. Elementary arithmetic
  132. Elementary mathematics
  133. Elementary shapes
  134. Elementary special functions
  135. Elliptic curves
  136. Elliptic functions
  137. Elliptic partial differential equations
  138. Enumerative combinatorics
  139. Equal-area projections
  140. Equations of fluid dynamics
  141. Equivalence (mathematics)
  142. Error detection and correction
  143. Errors and residuals
  144. Estimation of densities
  145. Euclidean symmetries
  146. Euclidean tilings
  147. Exchange algorithms
  148. Exponential family distributions
  149. Exponentials
  150. Factor analysis
  151. Factorial and binomial topics
  152. Fibonacci numbers
  153. Field (mathematics)
  154. Fields of mathematics
  155. Finite automata
  156. Finite differences
  157. Finite element method
  158. Finite fields
  159. Finite rings
  160. First order methods
  161. Fixed points (mathematics)
  162. Forcing (mathematics)
  163. Formal sciences
  164. Formal systems
  165. Formal theories of arithmetic
  166. Foundations of mathematics
  167. Fourier analysis
  168. Fourier series
  169. Fractal curves
  170. Fractional calculus
  171. Fractions (mathematics)
  172. Frequency distribution
  173. Fréchet spaces
  174. Function prefixes
  175. Function spaces
  176. Functional analysis
  177. Functional calculus
  178. Functional equations
  179. Functions and mappings
  180. Fuzzy logic
  181. Gambling terminology
  182. Gamma and related functions
  183. Gaussian function
  184. Gaussian quadratures
  185. Generalizations
  186. Generalizations of the derivative
  187. Generalized convexity
  188. Generalized functions
  189. Generalized manifolds
  190. Generating functions
  191. Geodesic (mathematics)
  192. Glossaries of mathematics
  193. Glossary of areas of mathematics
  194. Goldberg polyhedra
  195. Golden ratio
  196. Gradient methods
  197. Grandi's series
  198. Graph algorithms
  199. Graph coloring
  200. Graph connectivity
  201. Graph data structures
  202. Graph drawing
  203. Graph enumeration
  204. Graph families
  205. Graph invariants
  206. Graph operations
  207. Graphical projections
  208. Hamiltonian paths and cycles
  209. Hardy spaces
  210. Harmonic analysis
  211. Harmonic functions
  212. Heptagonal tilings
  213. Heptagrammic tilings
  214. Heraldic charges
  215. Hexadecimal numeral system
  216. Hexagonal tilings
  217. Hierarchy of functions
  218. Higher-order functions
  219. Hilbert space
  220. Hilbert's problems
  221. Historical treatment of quaternions
  222. History of mathematics
  223. Homeomorphisms
  224. Homogeneous polynomials
  225. Homogeneous spaces
  226. Horizontal coordinate system
  227. Hyperbolic knots and links
  228. Hyperbolic partial differential equations
  229. Hyperbolic tilings
  230. Hypercomplex numbers
  231. Hypergraphs
  232. Immediate inference
  233. Individual graphs
  234. Inequalities
  235. Infinite graphs
  236. Infinite-order tilings
  237. Information
  238. Integer factorization algorithms
  239. Integer sequences
  240. Integrable systems
  241. Integral calculus
  242. Integral equations
  243. Integral representations
  244. Integral transforms
  245. Integration on manifolds
  246. Interpolation
  247. Intersection classes of graphs
  248. Invariant subspaces
  249. Inverse functions
  250. Irrational numbers
  251. Isochoric 3-honeycombs
  252. Isogonal 3-honeycombs
  253. Isogonal tilings
  254. Isohedral tilings
  255. Isotoxal tilings
  256. Iterated function system fractals
  257. Johnson solids
  258. Knot invariants
  259. Knots and links
  260. Knowledge representation
  261. Lambda calculus
  262. Laplace transforms
  263. Large cardinals
  264. Large integers
  265. Large numbers
  266. Lattice points
  267. Lattice-based cryptography
  268. Legendre polynomials
  269. Limit sets
  270. Limits (mathematics)
  271. Linear logic
  272. Linear operators
  273. Linear operators in calculus
  274. Lists of integrals
  275. Lists of shapes
  276. Lists of units of measurement
  277. Localization (mathematics)
  278. Logarithms
  279. Logic symbols
  280. Logical connectives
  281. Logical expressions
  282. Lorentzian manifolds
  283. Loss functions
  284. Lévy processes
  285. Magic squares
  286. Map projections
  287. Maps of manifolds
  288. Markov chain Monte Carlo
  289. Markov models
  290. Markov processes
  291. Mathematical analysis
  292. Mathematical and quantitative methods (economics)
  293. Mathematical axioms
  294. Mathematical classification systems
  295. Mathematical concepts
  296. Mathematical constants
  297. Mathematical databases
  298. Mathematical economics
  299. Mathematical identities
  300. Mathematical induction
  301. Mathematical logic
  302. Mathematical markup languages
  303. Mathematical methods in general relativity
  304. Mathematical modeling
  305. Mathematical morphology
  306. Mathematical notation
  307. Mathematical optimization
  308. Mathematical paradoxes
  309. Mathematical physics
  310. Mathematical principles
  311. Mathematical problems
  312. Mathematical proofs
  313. Mathematical relations
  314. Mathematical series
  315. Mathematical structures
  316. Mathematical symbols
  317. Mathematical tables
  318. Mathematical terminology
  319. Mathematical tools
  320. Mathematics
  321. Mathematics books
  322. Mathematics education
  323. Mathematics journals
  324. Mathematics of infinitesimals
  325. Mathematics of rigidity
  326. Mathematics paradoxes
  327. Mathematics timelines
  328. Mathematics websites
  329. Mathematics-related lists
  330. Matrix decompositions
  331. Matrix normal forms
  332. Measures of complexity
  333. Meromorphic functions
  334. Metric tensors
  335. Minimal surfaces
  336. Minkowski spacetime
  337. Modular arithmetic
  338. Modular forms
  339. Moment (mathematics)
  340. Monte Carlo methods
  341. Multiplication
  342. Multivariable calculus
  343. Multivariate continuous distributions
  344. Multivariate interpolation
  345. Necessity and sufficiency
  346. Non-Newtonian calculus
  347. Non-standard analysis
  348. Non-standard positional numeral systems
  349. Nonconvex polyhedra
  350. Nonlinear functional analysis
  351. Nonlinear systems
  352. Nonstandard analysis
  353. Normal distribution
  354. Normed spaces
  355. Norms (mathematics)
  356. Numeral systems
  357. Numerical analysis
  358. Numerical differential equations
  359. Numerical function drawing
  360. Numerical integration
  361. Numerical integration (quadrature)
  362. Obfuscation
  363. Operations research
  364. Optimal decisions
  365. Optimization algorithms and methods
  366. Optimization in vector spaces
  367. Optimization of ordered sets
  368. Order-2 tilings
  369. Order-3-n 3-honeycombs
  370. Order-4 tilings
  371. Order-4-n 3-honeycombs
  372. Order-5 tilings
  373. Order-5-n 3-honeycombs
  374. Order-6 tilings
  375. Order-6-n 3-honeycombs
  376. Order-7 tilings
  377. Order-7-n 3-honeycombs
  378. Order-8-n 3-honeycombs
  379. Order-n-2 3-honeycombs
  380. Order-n-3 3-honeycombs
  381. Order-n-4 3-honeycombs
  382. Order-n-5 3-honeycombs
  383. Order-n-6 3-honeycombs
  384. Order-n-7 3-honeycombs
  385. Order-n-8 3-honeycombs
  386. Ordinal numbers
  387. Ordinary differential equations
  388. Orthogonal coordinate systems
  389. Orthogonal polynomials
  390. Orthogonal wavelets
  391. Oscillation
  392. Parabolic partial differential equations
  393. Paradoxes of infinity
  394. Parametric families of graphs
  395. Parity (mathematics)
  396. Partial differential equations
  397. Pentagonal tilings
  398. Pentagrammic-order tilings
  399. Perfect graphs
  400. Permutation patterns
  401. Permutations
  402. Pi algorithms
  403. Planar graphs
  404. Planar surfaces
  405. Platonic solids
  406. Point processes
  407. Poisson distribution
  408. Poisson point processes
  409. Polyhedral combinatorics
  410. Polyhedral compounds
  411. Polynomial functions
  412. Polynomials
  413. Positional numeral systems
  414. Prime numbers
  415. Prismatoid polyhedra
  416. Problem structuring methods
  417. Propositional calculus
  418. Pseudorandomness
  419. Pyramids and bipyramids
  420. Quadratic forms
  421. Quadratic irrational numbers
  422. Quadratic residue
  423. Quadrilaterals
  424. Quality control tools
  425. Quantification
  426. Quasiregular polyhedra
  427. Quaternions
  428. Quotient objects
  429. Random graphs
  430. Random matrices
  431. Randomized algorithms
  432. Rational functions
  433. Rational numbers
  434. Real analysis
  435. Real closed field
  436. Real numbers
  437. Real transcendental numbers
  438. Recurrence relations
  439. Regression analysis
  440. Regular 3-honeycombs
  441. Regular graphs
  442. Regular polyhedra
  443. Regular tessellations
  444. Regular tilings
  445. Riemann surfaces
  446. Riemannian manifolds
  447. Root-finding algorithms
  448. Rotation in three dimensions
  449. Rotational symmetry
  450. Rules of inference
  451. Runge–Kutta methods
  452. Scaling symmetries
  453. Scientific method
  454. Self-dual polyhedra
  455. Self-dual tilings
  456. Self-organization
  457. Semiregular tilings
  458. Separation axioms
  459. Sequence spaces
  460. Sequences and series
  461. Series expansions
  462. Set families
  463. Set indices on mathematics
  464. Sets of real numbers
  465. Several complex variables
  466. Shift-and-add algorithms
  467. Simplicial sets
  468. Singular integrals
  469. Singular value decomposition
  470. Smooth functions
  471. Smooth manifolds
  472. Snub tilings
  473. Sobolev spaces
  474. Sources of knowledge
  475. Space-filling polyhedra
  476. Spanning tree
  477. Sparse matrices
  478. Spatial data analysis
  479. Spatial gradient
  480. Spatial processes
  481. Special functions
  482. Spectral sequences
  483. Spherical trigonometry
  484. Spiric sections
  485. Splines (mathematics)
  486. Square tilings
  487. Stable distributions
  488. Star polygons
  489. Stochastic calculus
  490. Stochastic differential equations
  491. Stochastic models
  492. Stochastic processes
  493. Strongly regular graphs
  494. Structural analysis
  495. Structures on manifolds
  496. Summability methods
  497. Survival analysis
  498. Symmetric functions
  499. Symmetric relations
  500. Ternary operations
  501. Theta functions
  502. Three-dimensional coordinate systems
  503. Time domain analysis
  504. Time in science
  505. Transcendental numbers
  506. Transfer functions
  507. Transformation (function)
  508. Transforms
  509. Transitive relations
  510. Triangles of numbers
  511. Triangular tilings
  512. Trigonometric functions
  513. Trigonometry
  514. Truncated tilings
  515. Two-dimensional coordinate systems
  516. Types of databases
  517. Types of functions
  518. Unary operations
  519. Undecidable conjectures
  520. Unification (computer science)
  521. Uniform polyhedra
  522. Uniform spaces
  523. Uniform tilings
  524. Unitary operators
  525. Units of area
  526. Units of luminous intensity
  527. Units of plane angle
  528. Units of power
  529. Unsolved problems in mathematics
  530. Variables (mathematics)
  531. Variants of random walks
  532. Variational analysis
  533. Variational principles
  534. Vector bundles
  535. Vector calculus
  536. Vector spaces
  537. Vectors (mathematics and physics)
  538. Vertical position
  539. Wiener process
  540. Zeta and L-functions
  541. Δ-hyperbolic space

Theorems

  1. Automated theorem proving
  2. Central limit theorem
  3. Compactness theorems
  4. Fixed-point theorems
  5. Fundamental theorems
  6. Isomorphism theorems
  7. Mathematical theorems
  8. Probability theorems
  9. Statistical theorems
  10. Theorems about prime numbers
  11. Theorems in Fourier analysis
  12. Theorems in Riemannian geometry
  13. Theorems in abstract algebra
  14. Theorems in algebra
  15. Theorems in algebraic geometry
  16. Theorems in algebraic number theory
  17. Theorems in algebraic topology
  18. Theorems in analysis
  19. Theorems in analytic number theory
  20. Theorems in approximation theory
  21. Theorems in calculus
  22. Theorems in combinatorics
  23. Theorems in complex analysis
  24. Theorems in complex geometry
  25. Theorems in computational complexity theory
  26. Theorems in convex geometry
  27. Theorems in differential geometry
  28. Theorems in differential topology
  29. Theorems in discrete geometry
  30. Theorems in discrete mathematics
  31. Theorems in functional analysis
  32. Theorems in geometry
  33. Theorems in graph theory
  34. Theorems in group theory
  35. Theorems in harmonic analysis
  36. Theorems in linear algebra
  37. Theorems in measure theory
  38. Theorems in number theory
  39. Theorems in plane geometry
  40. Theorems in projective geometry
  41. Theorems in real analysis
  42. Theorems in representation theory
  43. Theorems in statistics
  44. Theorems in the foundations of mathematics
  45. Theorems in topology
  46. Theorems regarding stochastic processes

Theories

  1. Abelian group theory
  2. Additive number theory
  3. Algebraic K-theory
  4. Algebraic graph theory
  5. Algebraic number theory
  6. Analytic number theory
  7. Approximation theory
  8. Asymptotic theory (statistics)
  9. Axioms of set theory
  10. Basic concepts in infinite set theory
  11. Basic concepts in set theory
  12. Bifurcation theory
  13. Category theory
  14. Chaos theory
  15. Class field theory
  16. Classical control theory
  17. Coding theory
  18. Combinatorial game theory
  19. Complex systems theory
  20. Computability theory
  21. Computational number theory
  22. Computational problems in graph theory
  23. Conformal field theory
  24. Continuum theory
  25. Density functional theory
  26. Descriptive set theory
  27. Dimension theory
  28. Effective descriptive set theory
  29. Elementary number theory
  30. Ergodic theory
  31. Estimation theory
  32. Experiment (probability theory)
  33. Extremal graph theory
  34. Field theory
  35. Free probability theory
  36. Galois theory
  37. Game theory
  38. Geometric graph theory
  39. Geometric group theory
  40. Geometric transversal theory
  41. Graph minor theory
  42. Graph theory
  43. Graph theory objects
  44. Group theory
  45. Hidden variable theory
  46. Higher category theory
  47. Homology theory
  48. Homotopy theory
  49. Independence (probability theory)
  50. Infinite group theory
  51. Information theory
  52. Inner model theory
  53. Intersection theory
  54. Invariant theory
  55. Knot theory
  56. Large deviations theory
  57. Lattice theory
  58. Limits (category theory)
  59. Martingale theory
  60. Matching (graph theory)
  61. Matrix theory
  62. Matroid theory
  63. Measure theory
  64. Measures (measure theory)
  65. Metatheory
  66. Model theory
  67. Module theory
  68. Network theory
  69. Number theory
  70. Objects (category theory)
  71. Operator theory
  72. Order theory
  73. Paradoxes of naive set theory
  74. Paradoxes of set theory
  75. Perturbation theory
  76. Probability theory
  77. Probability theory paradoxes
  78. Queueing theory
  79. Ramsey theory
  80. Representation theory
  81. Representation theory of Lie algebras
  82. Representation theory of Lie groups
  83. Representation theory of algebraic groups
  84. Representation theory of finite groups
  85. Representation theory of groups
  86. Ring theory
  87. Scheme theory
  88. Semigroup theory
  89. Set theory
  90. Sheaf theory
  91. Singularity theory
  92. Spectral theory
  93. Squares in number theory
  94. Stability theory
  95. Statistical theory
  96. Structural complexity theory
  97. Summability theory
  98. Surgery theory
  99. Systems of set theory
  100. Systems theory
  101. Theorems in algebraic number theory
  102. Theorems in analytic number theory
  103. Theorems in approximation theory
  104. Theorems in computational complexity theory
  105. Theorems in graph theory
  106. Theorems in group theory
  107. Theorems in measure theory
  108. Theorems in number theory
  109. Theorems in representation theory
  110. Theory of computation
  111. Theory of probability distributions
  112. Topological graph theory
  113. Topos theory
  114. Trees (graph theory)
  115. Type theory
  116. Unitary representation theory

Algebra

  1. Abstract algebra
  2. Algebra of random variables
  3. Algebraic K-theory
  4. Algebraic combinatorics
  5. Algebraic curves
  6. Algebraic geometry
  7. Algebraic graph theory
  8. Algebraic groups
  9. Algebraic homogeneous spaces
  10. Algebraic logic
  11. Algebraic number theory
  12. Algebraic numbers
  13. Algebraic structures
  14. Algebraic surfaces
  15. Algebraic topology
  16. Algebraic varieties
  17. Banach algebras
  18. Boolean algebra
  19. C-algebras
  20. Clifford algebras
  21. Commutative algebra
  22. Composition algebras
  23. Computer algebra
  24. Diagram algebras
  25. Differential algebra
  26. Elementary algebra
  27. Exceptional Lie algebras
  28. Free algebraic structures
  29. Geometric algebra
  30. Homological algebra
  31. Hopf algebras
  32. Lie algebras
  33. Linear algebra
  34. Linear algebraic groups
  35. Multilinear algebra
  36. Non-associative algebra
  37. Non-associative algebras
  38. Nonlinear algebra
  39. Numerical linear algebra
  40. Ockham algebras
  41. Operator algebras
  42. Properties of Lie algebras
  43. Real algebraic geometry
  44. Representation theory of Lie algebras
  45. Representation theory of algebraic groups
  46. Super linear algebra
  47. Theorems in abstract algebra
  48. Theorems in algebra
  49. Theorems in algebraic geometry
  50. Theorems in algebraic number theory
  51. Theorems in algebraic topology
  52. Theorems in linear algebra
  53. Topological algebra
  54. Topological methods of algebraic geometry
  55. Universal algebra
  56. Von Neumann algebras

Statistics

  1. Applied probability
  2. Asymptotic theory (statistics)
  3. Bayesian statistics
  4. Biostatistics journals
  5. Computational statistics
  6. Computational statistics journals
  7. Directional statistics
  8. Experiment (probability theory)
  9. Free probability theory
  10. Functions related to probability distributions
  11. Independence (probability theory)
  12. Infinitely divisible probability distributions
  13. Location-scale family probability distributions
  14. Logic and statistics
  15. Multivariate statistics
  16. Nonparametric statistics
  17. Parametric statistics
  18. Probabilistic arguments
  19. Probabilistic inequalities
  20. Probability
  21. Probability and statistics
  22. Probability assessment
  23. Probability bounds analysis
  24. Probability fallacies
  25. Probability interpretations
  26. Probability problems
  27. Probability theorems
  28. Probability theory
  29. Probability theory paradoxes
  30. Robust statistics
  31. Sampling (statistics)
  32. Statistical algorithms
  33. Statistical approximations
  34. Statistical data types
  35. Statistical deviation and dispersion
  36. Statistical hypothesis testing
  37. Statistical inference
  38. Statistical methods
  39. Statistical paradoxes
  40. Statistical parameters
  41. Statistical randomness
  42. Statistical ratios
  43. Statistical theorems
  44. Statistical theory
  45. Statistics
  46. Statistics journals
  47. Statistics-related lists
  48. Summary statistics
  49. Tails of probability distributions
  50. Theorems in statistics
  51. Theory of probability distributions
  52. Types of probability distributions

Geometry

  1. Affine geometry
  2. Algebraic geometry
  3. Analytic geometry
  4. Arithmetic geometry
  5. Arithmetic problems of plane geometry
  6. Birational geometry
  7. Classical geometry
  8. Computational geometry
  9. Configurations (geometry)
  10. Conformal geometry
  11. Contact geometry
  12. Convex geometry
  13. Coordinate systems in differential geometry
  14. Descriptive geometry
  15. Differential geometry
  16. Differential geometry of surfaces
  17. Diophantine geometry
  18. Discrete geometry
  19. Elementary geometry
  20. Euclidean geometry
  21. Euclidean plane geometry
  22. Euclidean solid geometry
  23. Finite geometry
  24. Four-dimensional geometry
  25. Geometric algebra
  26. Geometric algorithms
  27. Geometric centers
  28. Geometric dissection
  29. Geometric graph theory
  30. Geometric graphs
  31. Geometric group theory
  32. Geometric inequalities
  33. Geometric measurement
  34. Geometric shapes
  35. Geometric topology
  36. Geometric transversal theory
  37. Geometry of divisors
  38. Geometry of numbers
  39. Geometry processing
  40. Honeycombs (geometry)
  41. Hyperbolic geometry
  42. Hypergeometric functions
  43. Incidence geometry
  44. Integral geometry
  45. Metric geometry
  46. Multi-dimensional geometry
  47. Non-Euclidean geometry
  48. Noncommutative geometry
  49. Orientation (geometry)
  50. Projective geometry
  51. Real algebraic geometry
  52. Riemannian geometry
  53. Special hypergeometric functions
  54. Spherical geometry
  55. Symplectic geometry
  56. Systolic geometry
  57. Theorems in Riemannian geometry
  58. Theorems in algebraic geometry
  59. Theorems in complex geometry
  60. Theorems in convex geometry
  61. Theorems in differential geometry
  62. Theorems in discrete geometry
  63. Theorems in geometry
  64. Theorems in plane geometry
  65. Theorems in projective geometry
  66. Topological methods of algebraic geometry
  67. Triangle geometry
  68. Triangulation (geometry)

Topology

  1. Algebraic topology
  2. Computational topology
  3. Differential topology
  4. General topology
  5. Geometric topology
  6. Properties of topological spaces
  7. Symplectic topology
  8. Theorems in algebraic topology
  9. Theorems in differential topology
  10. Theorems in topology
  11. Topological algebra
  12. Topological graph theory
  13. Topological groups
  14. Topological methods of algebraic geometry
  15. Topological spaces
  16. Topological vector spaces
  17. Topology of Lie groups
  18. Topology of function spaces
  19. Topology of homogeneous spaces
  20. Trees (topology)

Groups

  1. Abelian group theory
  2. Algebraic groups
  3. Braid groups
  4. Coxeter groups
  5. Discrete groups
  6. Finite groups
  7. Functional subgroups
  8. Geometric group theory
  9. Group actions (mathematics)
  10. Group theory
  11. Infinite group theory
  12. Kleinian groups
  13. Lie groups
  14. Linear algebraic groups
  15. Ordered groups
  16. Permutation groups
  17. Properties of groups
  18. Quantum groups
  19. Representation theory of Lie groups
  20. Representation theory of algebraic groups
  21. Representation theory of finite groups
  22. Representation theory of groups
  23. Semigroup theory
  24. Solvable groups
  25. Sporadic groups
  26. Subgroup properties
  27. Theorems in group theory
  28. Topological groups
  29. Topology of Lie groups