HandWiki:Math

From HandWiki
Jump to: navigation, search


Handwiki math.svg Mathematics

Mathematics (from Greek "knowledge, study, learning") includes the study of such topics as quantity (number theory), structure (algebra), space (geometry), and change (mathematical analysis).     [Add article].



List of Categories

0

Main topics

  1. 0 (number)
  2. 1 (number)
  3. 10 (number)
  4. 2 (number)
  5. 3 (number)
  6. 3-manifolds
  7. 4 (number)
  8. 5 (number)
  9. 6 (number)
  10. 7 (number)
  11. 8 (number)
  12. 9 (number)
  13. Abelian varieties
  14. Additive combinatorics
  15. Adjoint functors
  16. Amount of substance
  17. Analysis of algorithms
  18. Analysis of variance
  19. Analytic functions
  20. Apeirogonal tilings
  21. Aperiodic tilings
  22. Applied mathematics
  23. Approximation algorithms
  24. Approximations
  25. Archimedean solids
  26. Argument mapping
  27. Arithmetic
  28. Arithmetic functions
  29. Articles containing proofs
  30. Asymptotic analysis
  31. Automorphic forms
  32. Axiom of choice
  33. Banach spaces
  34. Bayesian estimation
  35. Bayesian inference
  36. Behavior selection algorithms
  37. Bilinear operators
  38. Binary arithmetic
  39. Binary operations
  40. Binary relations
  41. Boundary conditions
  42. Cache coherency
  43. Cardinal numbers
  44. Catalan solids
  45. Causal diagrams
  46. Chaotic maps
  47. Classes of prime numbers
  48. Classification algorithms
  49. Closure operators
  50. Clustering criteria
  51. Cohomology theories
  52. Combinatorial algorithms
  53. Combinatorial optimization
  54. Combinatorics
  55. Compactness (mathematics)
  56. Complex analysis
  57. Complex dynamics
  58. Complex manifolds
  59. Complex numbers
  60. Complex surfaces
  61. Computational fields of study
  62. Computer arithmetic
  63. Conceptual modelling
  64. Conditionals
  65. Conformal mapping
  66. Conformal projections
  67. Conic sections
  68. Conjectures
  69. Conjugate prior distributions
  70. Connection (mathematics)
  71. Conservation equations
  72. Constructible polygons
  73. Constructivism (mathematics)
  74. Continued fractions
  75. Continuous distributions
  76. Continuous integration
  77. Continuous mappings
  78. Continuous wavelets
  79. Convergence (mathematics)
  80. Convex analysis
  81. Convex hull algorithms
  82. Convex optimization
  83. Coordinate systems
  84. Covariance and correlation
  85. Covering lemmas
  86. Curvature (mathematics)
  87. Cyclotomic fields
  88. Decomposition methods
  89. Definitions of mathematical integration
  90. Deltahedra
  91. Design of experiments
  92. Determinants
  93. Deterministic global optimization
  94. Dichotomies
  95. Differential calculus
  96. Differential equations
  97. Differential forms
  98. Differential operators
  99. Differential systems
  100. Differentiation rules
  101. Digit-by-digit algorithms
  102. Dimension reduction
  103. Dimensionless numbers
  104. Diophantine approximation
  105. Diophantine equations
  106. Directed graphs
  107. Discrete distributions
  108. Discrete mathematics
  109. Discrete transforms
  110. Divergent series
  111. Division (mathematics)
  112. Divisor function
  113. Dynamical systems
  114. E (mathematical constant)
  115. Educational technology
  116. Elementary arithmetic
  117. Elementary mathematics
  118. Elementary shapes
  119. Elementary special functions
  120. Elliptic curves
  121. Elliptic functions
  122. Elliptic partial differential equations
  123. Enumerative combinatorics
  124. Equal-area projections
  125. Equations of fluid dynamics
  126. Equivalence (mathematics)
  127. Error detection and correction
  128. Errors and residuals
  129. Estimation of densities
  130. Euclidean symmetries
  131. Euclidean tilings
  132. Exchange algorithms
  133. Exponential family distributions
  134. Exponentials
  135. Factor analysis
  136. Factorial and binomial topics
  137. Fibonacci numbers
  138. Fields of mathematics
  139. Finite automata
  140. Finite differences
  141. Finite element method
  142. Finite fields
  143. Finite rings
  144. First order methods
  145. Fixed points (mathematics)
  146. Forcing (mathematics)
  147. Formal sciences
  148. Formal systems
  149. Formal theories of arithmetic
  150. Fourier analysis
  151. Fourier series
  152. Fractal curves
  153. Fractional calculus
  154. Fractions (mathematics)
  155. Frequency distribution
  156. Fréchet spaces
  157. Function prefixes
  158. Functional analysis
  159. Functional equations
  160. Functions and mappings
  161. Fuzzy logic
  162. Gambling terminology
  163. Gamma and related functions
  164. Gaussian function
  165. Gaussian quadratures
  166. Generalizations
  167. Generalizations of the derivative
  168. Generalized functions
  169. Generalized manifolds
  170. Generating functions
  171. Geodesic (mathematics)
  172. Glossaries of mathematics
  173. Glossary of areas of mathematics
  174. Golden ratio
  175. Gradient methods
  176. Grandi's series
  177. Graph algorithms
  178. Graph coloring
  179. Graph connectivity
  180. Graph data structures
  181. Graph drawing
  182. Graph enumeration
  183. Graph families
  184. Graph invariants
  185. Graph operations
  186. Graphical projections
  187. Hamiltonian paths and cycles
  188. Harmonic analysis
  189. Harmonic functions
  190. Heraldic charges
  191. Hexadecimal numeral system
  192. Hexagonal tilings
  193. Hierarchy of functions
  194. Higher-order functions
  195. Hilbert space
  196. Hilbert's problems
  197. Historical treatment of quaternions
  198. History of mathematics
  199. Homogeneous polynomials
  200. Homogeneous spaces
  201. Horizontal coordinate system
  202. Hyperbolic partial differential equations
  203. Hyperbolic tilings
  204. Hypercomplex numbers
  205. Hypergraphs
  206. Hypotheses
  207. Immediate inference
  208. Individual graphs
  209. Inequalities
  210. Infinite-order tilings
  211. Information
  212. Integer factorization algorithms
  213. Integer sequences
  214. Integrable systems
  215. Integral calculus
  216. Integral equations
  217. Integral representations
  218. Integral transforms
  219. Integration on manifolds
  220. International System of Units
  221. Interpolation
  222. Intersection classes of graphs
  223. Invariant subspaces
  224. Inverse functions
  225. Irrational numbers
  226. Isochoric 3-honeycombs
  227. Isogonal 3-honeycombs
  228. Isogonal tilings
  229. Isohedral tilings
  230. Isotoxal tilings
  231. Iterated function system fractals
  232. Johnson solids
  233. Knot invariants
  234. Knots and links
  235. Knowledge representation
  236. Lambda calculus
  237. Large cardinals
  238. Large integers
  239. Large numbers
  240. Lattice points
  241. Legendre polynomials
  242. Limit sets
  243. Limits (mathematics)
  244. Linear operators
  245. Linear operators in calculus
  246. Lists of integrals
  247. Lists of units of measurement
  248. Localization (mathematics)
  249. Logarithms
  250. Logic symbols
  251. Logical connectives
  252. Logical expressions
  253. Lorentzian manifolds
  254. Loss functions
  255. Lévy processes
  256. Map projections
  257. Maps of manifolds
  258. Markov chain Monte Carlo
  259. Markov models
  260. Markov processes
  261. Mathematical analysis
  262. Mathematical and quantitative methods (economics)
  263. Mathematical axioms
  264. Mathematical chemistry
  265. Mathematical classification systems
  266. Mathematical concepts
  267. Mathematical constants
  268. Mathematical economics
  269. Mathematical identities
  270. Mathematical induction
  271. Mathematical logic
  272. Mathematical methods in general relativity
  273. Mathematical modeling
  274. Mathematical morphology
  275. Mathematical notation
  276. Mathematical optimization
  277. Mathematical physics
  278. Mathematical principles
  279. Mathematical problems
  280. Mathematical proofs
  281. Mathematical relations
  282. Mathematical series
  283. Mathematical structures
  284. Mathematical symbols
  285. Mathematical tables
  286. Mathematical terminology
  287. Mathematical tools
  288. Mathematics
  289. Mathematics of infinitesimals
  290. Mathematics of rigidity
  291. Mathematics paradoxes
  292. Mathematics timelines
  293. Mathematics-related lists
  294. Matrix decompositions
  295. Matrix normal forms
  296. Measures of complexity
  297. Metric tensors
  298. Minimal surfaces
  299. Minkowski spacetime
  300. Modular arithmetic
  301. Modular forms
  302. Moment (mathematics)
  303. Monte Carlo methods
  304. Multiplication
  305. Multivariable calculus
  306. Multivariate continuous distributions
  307. Multivariate interpolation
  308. Necessity and sufficiency
  309. Non-Newtonian calculus
  310. Non-standard analysis
  311. Nonconvex polyhedra
  312. Nonlinear functional analysis
  313. Nonlinear systems
  314. Normal distribution
  315. Norms (mathematics)
  316. Numeral systems
  317. Numerical analysis
  318. Numerical differential equations
  319. Numerical function drawing
  320. Numerical integration
  321. Obfuscation
  322. Operations research
  323. Optimal decisions
  324. Optimization algorithms and methods
  325. Optimization in vector spaces
  326. Order-3-n 3-honeycombs
  327. Order-4 tilings
  328. Order-4-n 3-honeycombs
  329. Order-5 tilings
  330. Order-6 tilings
  331. Order-n-5 3-honeycombs
  332. Ordinal numbers
  333. Ordinary differential equations
  334. Orthogonal coordinate systems
  335. Orthogonal polynomials
  336. Orthogonal wavelets
  337. Oscillation
  338. Parabolic partial differential equations
  339. Paradoxes of infinity
  340. Parametric families of graphs
  341. Parity (mathematics)
  342. Partial differential equations
  343. Pentagonal tilings
  344. Pentagrammic-order tilings
  345. Perfect graphs
  346. Permutation patterns
  347. Permutations
  348. Planar graphs
  349. Platonic solids
  350. Point processes
  351. Poisson distribution
  352. Poisson point processes
  353. Polyhedral combinatorics
  354. Polyhedral compounds
  355. Polynomial functions
  356. Polynomials
  357. Positional numeral systems
  358. Prime numbers
  359. Prismatoid polyhedra
  360. Problem structuring methods
  361. Propositional calculus
  362. Pseudorandomness
  363. Pyramids and bipyramids
  364. Quadratic forms
  365. Quadratic irrational numbers
  366. Quadratic residue
  367. Quadrilaterals
  368. Quality control tools
  369. Quantification
  370. Quasiregular polyhedra
  371. Quaternions
  372. Quotient objects
  373. Random graphs
  374. Random matrices
  375. Randomized algorithms
  376. Rational numbers
  377. Real analysis
  378. Real closed field
  379. Real numbers
  380. Real transcendental numbers
  381. Recurrence relations
  382. Regression analysis
  383. Regular 3-honeycombs
  384. Regular graphs
  385. Regular tilings
  386. Riemann surfaces
  387. Riemannian manifolds
  388. Root-finding algorithms
  389. Rotation in three dimensions
  390. Rotational symmetry
  391. Rules of inference
  392. Runge–Kutta methods
  393. Scaling symmetries
  394. Scientific method
  395. Self-dual polyhedra
  396. Self-dual tilings
  397. Self-organization
  398. Semiregular tilings
  399. Separation axioms
  400. Sequence spaces
  401. Sequences and series
  402. Series expansions
  403. Set families
  404. Set indices on mathematics
  405. Sets of real numbers
  406. Several complex variables
  407. Shift-and-add algorithms
  408. Simplicial sets
  409. Singular integrals
  410. Singular value decomposition
  411. Smooth functions
  412. Smooth manifolds
  413. Snub tilings
  414. Sobolev spaces
  415. Sources of knowledge
  416. Space-filling polyhedra
  417. Spanning tree
  418. Sparse matrices
  419. Spatial data analysis
  420. Spatial gradient
  421. Spatial processes
  422. Special functions
  423. Spectral sequences
  424. Spherical trigonometry
  425. Splines (mathematics)
  426. Square tilings
  427. Stable distributions
  428. Stochastic calculus
  429. Stochastic differential equations
  430. Stochastic models
  431. Stochastic processes
  432. Strongly regular graphs
  433. Structural analysis
  434. Structures on manifolds
  435. Summability methods
  436. Survival analysis
  437. Symmetric functions
  438. Symmetric relations
  439. Tensors in general relativity
  440. Ternary operations
  441. Three-dimensional coordinate systems
  442. Time domain analysis
  443. Time in science
  444. Transcendental numbers
  445. Transformation (function)
  446. Transforms
  447. Transitive relations
  448. Triangular tilings
  449. Trigonometric functions
  450. Trigonometry
  451. Truncated tilings
  452. Types of databases
  453. Types of functions
  454. Unary operations
  455. Undecidable conjectures
  456. Unification (computer science)
  457. Uniform spaces
  458. Uniform tilings
  459. Unitary operators
  460. Units of area
  461. Units of energy
  462. Units of luminous intensity
  463. Units of plane angle
  464. Units of power
  465. Units of temperature
  466. Unsolved problems in mathematics
  467. Variants of random walks
  468. Variational analysis
  469. Variational principles
  470. Vector bundles
  471. Vector calculus
  472. Vector spaces
  473. Vectors (mathematics and physics)
  474. Vertical position
  475. Wiener process
  476. Zeta and L-functions

Theorems

  1. Automated theorem proving
  2. Central limit theorem
  3. Compactness theorems
  4. Fixed-point theorems
  5. Fundamental theorems
  6. Mathematical theorems
  7. Probability theorems
  8. Statistical mechanics theorems
  9. Statistical theorems
  10. Theorems about prime numbers
  11. Theorems in Fourier analysis
  12. Theorems in abstract algebra
  13. Theorems in algebra
  14. Theorems in algebraic geometry
  15. Theorems in algebraic number theory
  16. Theorems in algebraic topology
  17. Theorems in analysis
  18. Theorems in analytic number theory
  19. Theorems in approximation theory
  20. Theorems in calculus
  21. Theorems in combinatorics
  22. Theorems in complex analysis
  23. Theorems in complex geometry
  24. Theorems in computational complexity theory
  25. Theorems in convex geometry
  26. Theorems in differential geometry
  27. Theorems in differential topology
  28. Theorems in discrete geometry
  29. Theorems in discrete mathematics
  30. Theorems in functional analysis
  31. Theorems in geometry
  32. Theorems in graph theory
  33. Theorems in group theory
  34. Theorems in harmonic analysis
  35. Theorems in linear algebra
  36. Theorems in measure theory
  37. Theorems in number theory
  38. Theorems in plane geometry
  39. Theorems in projective geometry
  40. Theorems in real analysis
  41. Theorems in representation theory
  42. Theorems in the foundations of mathematics
  43. Theorems in topology

Theories

  1. Abelian group theory
  2. Additive number theory
  3. Algebraic K-theory
  4. Algebraic graph theory
  5. Algebraic number theory
  6. Analytic number theory
  7. Approximation theory
  8. Asymptotic theory (statistics)
  9. Axioms of set theory
  10. Basic concepts in infinite set theory
  11. Basic concepts in set theory
  12. Category theory
  13. Chaos theory
  14. Class field theory
  15. Classical control theory
  16. Coding theory
  17. Complex systems theory
  18. Computability theory
  19. Computational problems in graph theory
  20. Conformal field theory
  21. Continuum theory
  22. Descriptive set theory
  23. Dimension theory
  24. Elementary number theory
  25. Ergodic theory
  26. Estimation theory
  27. Experiment (probability theory)
  28. Extremal graph theory
  29. Field theory
  30. Free probability theory
  31. Galois theory
  32. Game theory
  33. Geometric graph theory
  34. Geometric group theory
  35. Graph minor theory
  36. Graph theory
  37. Graph theory objects
  38. Group theory
  39. Higher category theory
  40. Homology theory
  41. Homotopy theory
  42. Independence (probability theory)
  43. Infinite group theory
  44. Information theory
  45. Inner model theory
  46. Intersection theory
  47. Invariant theory
  48. Knot theory
  49. Large deviations theory
  50. Lattice theory
  51. Limits (category theory)
  52. Martingale theory
  53. Matrix theory
  54. Matroid theory
  55. Measure theory
  56. Measures (measure theory)
  57. Metatheory
  58. Model theory
  59. Module theory
  60. Network theory
  61. Number theory
  62. Objects (category theory)
  63. Operator theory
  64. Order theory
  65. Paradoxes of naive set theory
  66. Paradoxes of set theory
  67. Perturbation theory
  68. Probability theory
  69. Probability theory paradoxes
  70. Quantum information theory
  71. Queueing theory
  72. Ramsey theory
  73. Representation theory
  74. Representation theory of Lie algebras
  75. Representation theory of Lie groups
  76. Representation theory of finite groups
  77. Representation theory of groups
  78. Ring theory
  79. Scheme theory
  80. Semigroup theory
  81. Set theory
  82. Sheaf theory
  83. Singularity theory
  84. Spectral theory
  85. Squares in number theory
  86. Stability theory
  87. Statistical theory
  88. String theory
  89. Structural complexity theory
  90. Summability theory
  91. Systems of set theory
  92. Systems theory
  93. Theorems in algebraic number theory
  94. Theorems in analytic number theory
  95. Theorems in approximation theory
  96. Theorems in computational complexity theory
  97. Theorems in graph theory
  98. Theorems in group theory
  99. Theorems in measure theory
  100. Theorems in number theory
  101. Theorems in representation theory
  102. Theory of computation
  103. Theory of probability distributions
  104. Topological graph theory
  105. Topos theory
  106. Trees (graph theory)
  107. Type theory
  108. Unitary representation theory

Algebra

  1. Abstract algebra
  2. Algebra of random variables
  3. Algebraic K-theory
  4. Algebraic combinatorics
  5. Algebraic curves
  6. Algebraic geometry
  7. Algebraic graph theory
  8. Algebraic groups
  9. Algebraic homogeneous spaces
  10. Algebraic logic
  11. Algebraic number theory
  12. Algebraic numbers
  13. Algebraic structures
  14. Algebraic surfaces
  15. Algebraic topology
  16. Algebraic varieties
  17. Banach algebras
  18. Boolean algebra
  19. C-algebras
  20. Clifford algebras
  21. Commutative algebra
  22. Composition algebras
  23. Computer algebra
  24. Diagram algebras
  25. Differential algebra
  26. Elementary algebra
  27. Exceptional Lie algebras
  28. Free algebraic structures
  29. Geometric algebra
  30. Homological algebra
  31. Hopf algebras
  32. Lie algebras
  33. Linear algebra
  34. Linear algebraic groups
  35. Multilinear algebra
  36. Non-associative algebra
  37. Non-associative algebras
  38. Nonlinear algebra
  39. Numerical linear algebra
  40. Ockham algebras
  41. Operator algebras
  42. Real algebraic geometry
  43. Representation theory of Lie algebras
  44. Theorems in abstract algebra
  45. Theorems in algebra
  46. Theorems in algebraic geometry
  47. Theorems in algebraic number theory
  48. Theorems in algebraic topology
  49. Theorems in linear algebra
  50. Topological algebra
  51. Topological methods of algebraic geometry
  52. Universal algebra
  53. Von Neumann algebras

Statistics

  1. Applied probability
  2. Asymptotic theory (statistics)
  3. Bayesian statistics
  4. Computational statistics
  5. Directional statistics
  6. Experiment (probability theory)
  7. Free probability theory
  8. Functions related to probability distributions
  9. Independence (probability theory)
  10. Infinitely divisible probability distributions
  11. Location-scale family probability distributions
  12. Logic and statistics
  13. Multivariate statistics
  14. Nonparametric statistics
  15. Parametric statistics
  16. Probabilistic arguments
  17. Probabilistic inequalities
  18. Probability
  19. Probability and statistics
  20. Probability assessment
  21. Probability fallacies
  22. Probability interpretations
  23. Probability problems
  24. Probability theorems
  25. Probability theory
  26. Probability theory paradoxes
  27. Robust statistics
  28. Sampling (statistics)
  29. Statistical algorithms
  30. Statistical approximations
  31. Statistical data types
  32. Statistical deviation and dispersion
  33. Statistical hypothesis testing
  34. Statistical inference
  35. Statistical mechanics theorems
  36. Statistical methods
  37. Statistical paradoxes
  38. Statistical parameters
  39. Statistical randomness
  40. Statistical ratios
  41. Statistical theorems
  42. Statistical theory
  43. Statistics
  44. Statistics-related lists
  45. Summary statistics
  46. Theory of probability distributions
  47. Types of probability distributions

Geometry

  1. Affine geometry
  2. Algebraic geometry
  3. Analytic geometry
  4. Arithmetic geometry
  5. Arithmetic problems of plane geometry
  6. Birational geometry
  7. Classical geometry
  8. Computational geometry
  9. Conformal geometry
  10. Contact geometry
  11. Convex geometry
  12. Coordinate systems in differential geometry
  13. Differential geometry
  14. Differential geometry of surfaces
  15. Diophantine geometry
  16. Discrete geometry
  17. Elementary geometry
  18. Euclidean geometry
  19. Euclidean plane geometry
  20. Euclidean solid geometry
  21. Finite geometry
  22. Four-dimensional geometry
  23. Geometric algebra
  24. Geometric algorithms
  25. Geometric centers
  26. Geometric graph theory
  27. Geometric graphs
  28. Geometric group theory
  29. Geometric inequalities
  30. Geometric measurement
  31. Geometric shapes
  32. Geometric topology
  33. Geometry of divisors
  34. Geometry of numbers
  35. Geometry processing
  36. Honeycombs (geometry)
  37. Hyperbolic geometry
  38. Hypergeometric functions
  39. Incidence geometry
  40. Integral geometry
  41. Metric geometry
  42. Multi-dimensional geometry
  43. Non-Euclidean geometry
  44. Noncommutative geometry
  45. Orientation (geometry)
  46. Projective geometry
  47. Real algebraic geometry
  48. Riemannian geometry
  49. Special hypergeometric functions
  50. Spherical geometry
  51. Symplectic geometry
  52. Theorems in algebraic geometry
  53. Theorems in complex geometry
  54. Theorems in convex geometry
  55. Theorems in differential geometry
  56. Theorems in discrete geometry
  57. Theorems in geometry
  58. Theorems in plane geometry
  59. Theorems in projective geometry
  60. Topological methods of algebraic geometry
  61. Triangle geometry
  62. Triangulation (geometry)

Topology

  1. Algebraic topology
  2. Computational topology
  3. Differential topology
  4. General topology
  5. Geometric topology
  6. Properties of topological spaces
  7. Symplectic topology
  8. Theorems in algebraic topology
  9. Theorems in differential topology
  10. Theorems in topology
  11. Topological algebra
  12. Topological graph theory
  13. Topological groups
  14. Topological methods of algebraic geometry
  15. Topological spaces
  16. Topological vector spaces
  17. Topology of Lie groups
  18. Topology of function spaces
  19. Trees (topology)

Groups

  1. Abelian group theory
  2. Algebraic groups
  3. Discrete groups
  4. Finite groups
  5. Functional subgroups
  6. Geometric group theory
  7. Group actions (mathematics)
  8. Group theory
  9. Infinite group theory
  10. Kleinian groups
  11. Lie groups
  12. Linear algebraic groups
  13. Ordered groups
  14. Permutation groups
  15. Properties of groups
  16. Quantum groups
  17. Representation theory of Lie groups
  18. Representation theory of finite groups
  19. Representation theory of groups
  20. Semigroup theory
  21. Solvable groups
  22. Sporadic groups
  23. Subgroup properties
  24. Theorems in group theory
  25. Topological groups
  26. Topology of Lie groups

Grammarly Check DataMelt statistical framewwork for data scientists HandWiki ads