HandWiki:Math

From HandWiki

Mathematics (from Greek "knowledge, study, learning") includes the study of such topics as quantity (number theory), structure (algebra), space (geometry), and change (mathematical analysis). This portal covers all branches of pure (number theory, algebra, arithmetic, combinatorics, topology, mathematical analysis) and applied (calculus, statistics, set theory, trigonometry) mathematics.


Handwiki math.svg Portal of mathematics

Find here a list of categories organized by topics and a list of new articles submitted to this portal.

+ Add a new article



List of categories

0

Main topics

  1. 0 (number)
  2. 1 (number)
  3. 10 (number)
  4. 10-polytopes
  5. 1000 (number)
  6. 10000 (number)
  7. 11 (number)
  8. 2 (number)
  9. 3 (number)
  10. 3-manifolds
  11. 4 (number)
  12. 4-manifolds
  13. 4-polytopes
  14. 5 (number)
  15. 5-polytopes
  16. 6 (number)
  17. 6-polytopes
  18. 7 (number)
  19. 7-polytopes
  20. 8 (number)
  21. 9 (number)
  22. 9-polytopes
  23. Abelian varieties
  24. Additive combinatorics
  25. Additive functions
  26. Adjoint functors
  27. Analysis of variance
  28. Analytic functions
  29. Apeirogonal tilings
  30. Aperiodic tilings
  31. Applied mathematics
  32. Approximation algorithms
  33. Approximations
  34. Archimedean solids
  35. Argument mapping
  36. Arithmetic
  37. Arithmetic functions
  38. Articles containing proofs
  39. Asymptotic analysis
  40. Automorphic forms
  41. Axiom of choice
  42. Banach spaces
  43. Bayesian estimation
  44. Bayesian inference
  45. Behavior selection algorithms
  46. Bilinear operators
  47. Binary arithmetic
  48. Binary operations
  49. Binary relations
  50. Boundary conditions
  51. Cache coherency
  52. Cardinal numbers
  53. Catalan solids
  54. Causal diagrams
  55. Chaotic maps
  56. Characteristic classes
  57. Classes of prime numbers
  58. Classification algorithms
  59. Closure operators
  60. Clustering criteria
  61. Cohomology theories
  62. Combinatorial algorithms
  63. Combinatorial optimization
  64. Combinatorics
  65. Combinatory logic
  66. Compactification (mathematics)
  67. Compactness (mathematics)
  68. Complex analysis
  69. Complex distributions
  70. Complex dynamics
  71. Complex manifolds
  72. Complex numbers
  73. Complex surfaces
  74. Computational fields of study
  75. Computer arithmetic
  76. Conceptual modelling
  77. Conditionals
  78. Conformal mapping
  79. Conformal mappings
  80. Conformal projections
  81. Conic sections
  82. Conjectures
  83. Conjugate prior distributions
  84. Connection (mathematics)
  85. Conservation equations
  86. Constructible polygons
  87. Constructivism (mathematics)
  88. Continued fractions
  89. Continuous distributions
  90. Continuous integration
  91. Continuous mappings
  92. Continuous wavelets
  93. Convergence (mathematics)
  94. Convex analysis
  95. Convex hull algorithms
  96. Convex optimization
  97. Coordinate systems
  98. Covariance and correlation
  99. Covering lemmas
  100. Curvature (mathematics)
  101. Cyclotomic fields
  102. Decomposition methods
  103. Definitions of mathematical integration
  104. Deltahedra
  105. Design of experiments
  106. Determinants
  107. Deterministic global optimization
  108. Dichotomies
  109. Diffeomorphisms
  110. Differential calculus
  111. Differential equations
  112. Differential forms
  113. Differential operators
  114. Differential systems
  115. Differentiation rules
  116. Digit-by-digit algorithms
  117. Dimension reduction
  118. Dimensionless numbers
  119. Diophantine approximation
  120. Diophantine equations
  121. Directed graphs
  122. Discrete distributions
  123. Discrete mathematics
  124. Discrete transforms
  125. Divergent series
  126. Division (mathematics)
  127. Divisor function
  128. Domain decomposition methods
  129. Dynamical systems
  130. E (mathematical constant)
  131. Elementary arithmetic
  132. Elementary mathematics
  133. Elementary shapes
  134. Elementary special functions
  135. Elliptic curves
  136. Elliptic functions
  137. Elliptic partial differential equations
  138. Enumerative combinatorics
  139. Equal-area projections
  140. Equations of fluid dynamics
  141. Equivalence (mathematics)
  142. Error detection and correction
  143. Errors and residuals
  144. Estimation of densities
  145. Euclidean symmetries
  146. Euclidean tilings
  147. Exchange algorithms
  148. Exponential family distributions
  149. Exponentials
  150. Factor analysis
  151. Factorial and binomial topics
  152. Fibonacci numbers
  153. Field (mathematics)
  154. Fields of mathematics
  155. Finite automata
  156. Finite differences
  157. Finite element method
  158. Finite fields
  159. Finite rings
  160. First order methods
  161. Fixed points (mathematics)
  162. Forcing (mathematics)
  163. Formal sciences
  164. Formal systems
  165. Formal theories of arithmetic
  166. Foundations of mathematics
  167. Fourier analysis
  168. Fourier series
  169. Fractal curves
  170. Fractional calculus
  171. Fractions (mathematics)
  172. Frequency distribution
  173. Fréchet spaces
  174. Function prefixes
  175. Function spaces
  176. Functional analysis
  177. Functional calculus
  178. Functional equations
  179. Functions and mappings
  180. Fuzzy logic
  181. Gambling terminology
  182. Gamma and related functions
  183. Gaussian function
  184. Gaussian quadratures
  185. Generalizations
  186. Generalizations of the derivative
  187. Generalized convexity
  188. Generalized functions
  189. Generalized manifolds
  190. Generating functions
  191. Geodesic (mathematics)
  192. Glossaries of mathematics
  193. Glossary of areas of mathematics
  194. Goldberg polyhedra
  195. Golden ratio
  196. Gradient methods
  197. Grandi's series
  198. Graph algorithms
  199. Graph coloring
  200. Graph connectivity
  201. Graph data structures
  202. Graph drawing
  203. Graph enumeration
  204. Graph families
  205. Graph invariants
  206. Graph operations
  207. Graphical projections
  208. Hamiltonian paths and cycles
  209. Hardy spaces
  210. Harmonic analysis
  211. Harmonic functions
  212. Heptagonal tilings
  213. Heptagrammic tilings
  214. Heraldic charges
  215. Hexadecimal numeral system
  216. Hexagonal tilings
  217. Hierarchy of functions
  218. Higher-order functions
  219. Hilbert space
  220. Hilbert's problems
  221. Historical treatment of quaternions
  222. History of mathematics
  223. Homeomorphisms
  224. Homogeneous polynomials
  225. Homogeneous spaces
  226. Horizontal coordinate system
  227. Hyperbolic knots and links
  228. Hyperbolic partial differential equations
  229. Hyperbolic tilings
  230. Hypercomplex numbers
  231. Hypergraphs
  232. Immediate inference
  233. Individual graphs
  234. Inequalities
  235. Infinite graphs
  236. Infinite-order tilings
  237. Information
  238. Integer factorization algorithms
  239. Integer sequences
  240. Integrable systems
  241. Integral calculus
  242. Integral equations
  243. Integral representations
  244. Integral transforms
  245. Integration on manifolds
  246. Interpolation
  247. Intersection classes of graphs
  248. Invariant subspaces
  249. Inverse functions
  250. Irrational numbers
  251. Isochoric 3-honeycombs
  252. Isogonal 3-honeycombs
  253. Isogonal tilings
  254. Isohedral tilings
  255. Isotoxal tilings
  256. Iterated function system fractals
  257. Johnson solids
  258. Knot invariants
  259. Knots and links
  260. Knowledge representation
  261. Lambda calculus
  262. Laplace transforms
  263. Large cardinals
  264. Large integers
  265. Large numbers
  266. Lattice points
  267. Lattice-based cryptography
  268. Legendre polynomials
  269. Limit sets
  270. Limits (mathematics)
  271. Linear logic
  272. Linear operators
  273. Linear operators in calculus
  274. Lists of integrals
  275. Lists of shapes
  276. Lists of units of measurement
  277. Localization (mathematics)
  278. Logarithms
  279. Logic symbols
  280. Logical connectives
  281. Logical expressions
  282. Lorentzian manifolds
  283. Loss functions
  284. Lévy processes
  285. Magic squares
  286. Map projections
  287. Maps of manifolds
  288. Markov chain Monte Carlo
  289. Markov models
  290. Markov processes
  291. Mathematical analysis
  292. Mathematical and quantitative methods (economics)
  293. Mathematical axioms
  294. Mathematical classification systems
  295. Mathematical concepts
  296. Mathematical constants
  297. Mathematical databases
  298. Mathematical economics
  299. Mathematical identities
  300. Mathematical induction
  301. Mathematical logic
  302. Mathematical markup languages
  303. Mathematical methods in general relativity
  304. Mathematical modeling
  305. Mathematical morphology
  306. Mathematical notation
  307. Mathematical optimization
  308. Mathematical paradoxes
  309. Mathematical physics
  310. Mathematical principles
  311. Mathematical problems
  312. Mathematical proofs
  313. Mathematical relations
  314. Mathematical series
  315. Mathematical structures
  316. Mathematical symbols
  317. Mathematical tables
  318. Mathematical terminology
  319. Mathematical tools
  320. Mathematics
  321. Mathematics books
  322. Mathematics education
  323. Mathematics journals
  324. Mathematics of infinitesimals
  325. Mathematics of rigidity
  326. Mathematics paradoxes
  327. Mathematics textbooks
  328. Mathematics timelines
  329. Mathematics websites
  330. Mathematics-related lists
  331. Matrix decompositions
  332. Matrix normal forms
  333. Measures of complexity
  334. Meromorphic functions
  335. Metric tensors
  336. Minimal surfaces
  337. Minkowski spacetime
  338. Modular arithmetic
  339. Modular forms
  340. Moment (mathematics)
  341. Monte Carlo methods
  342. Multiplication
  343. Multivariable calculus
  344. Multivariate continuous distributions
  345. Multivariate interpolation
  346. Necessity and sufficiency
  347. Non-Newtonian calculus
  348. Non-standard analysis
  349. Non-standard positional numeral systems
  350. Nonconvex polyhedra
  351. Nonlinear functional analysis
  352. Nonlinear systems
  353. Nonstandard analysis
  354. Normal distribution
  355. Normed spaces
  356. Norms (mathematics)
  357. Numeral systems
  358. Numerical analysis
  359. Numerical differential equations
  360. Numerical function drawing
  361. Numerical integration
  362. Numerical integration (quadrature)
  363. Obfuscation
  364. Operations research
  365. Optimal decisions
  366. Optimization algorithms and methods
  367. Optimization in vector spaces
  368. Optimization of ordered sets
  369. Order-2 tilings
  370. Order-3-n 3-honeycombs
  371. Order-4 tilings
  372. Order-4-n 3-honeycombs
  373. Order-5 tilings
  374. Order-5-n 3-honeycombs
  375. Order-6 tilings
  376. Order-6-n 3-honeycombs
  377. Order-7 tilings
  378. Order-7-n 3-honeycombs
  379. Order-8-n 3-honeycombs
  380. Order-n-2 3-honeycombs
  381. Order-n-3 3-honeycombs
  382. Order-n-4 3-honeycombs
  383. Order-n-5 3-honeycombs
  384. Order-n-6 3-honeycombs
  385. Order-n-7 3-honeycombs
  386. Order-n-8 3-honeycombs
  387. Ordinal numbers
  388. Ordinary differential equations
  389. Orthogonal coordinate systems
  390. Orthogonal polynomials
  391. Orthogonal wavelets
  392. Oscillation
  393. Parabolic partial differential equations
  394. Paradoxes of infinity
  395. Parametric families of graphs
  396. Parity (mathematics)
  397. Partial differential equations
  398. Pentagonal tilings
  399. Pentagrammic-order tilings
  400. Perfect graphs
  401. Permutation patterns
  402. Permutations
  403. Pi algorithms
  404. Planar graphs
  405. Planar surfaces
  406. Platonic solids
  407. Point processes
  408. Poisson distribution
  409. Poisson point processes
  410. Polyhedral combinatorics
  411. Polyhedral compounds
  412. Polynomial functions
  413. Polynomials
  414. Positional numeral systems
  415. Prime numbers
  416. Prismatoid polyhedra
  417. Problem structuring methods
  418. Propositional calculus
  419. Pseudorandomness
  420. Pyramids and bipyramids
  421. Quadratic forms
  422. Quadratic irrational numbers
  423. Quadratic residue
  424. Quadrilaterals
  425. Quality control tools
  426. Quantification
  427. Quasiregular polyhedra
  428. Quaternions
  429. Quotient objects
  430. Random graphs
  431. Random matrices
  432. Randomized algorithms
  433. Rational functions
  434. Rational numbers
  435. Real analysis
  436. Real closed field
  437. Real numbers
  438. Real transcendental numbers
  439. Recurrence relations
  440. Regression analysis
  441. Regular 3-honeycombs
  442. Regular graphs
  443. Regular polyhedra
  444. Regular tessellations
  445. Regular tilings
  446. Riemann surfaces
  447. Riemannian manifolds
  448. Root-finding algorithms
  449. Rotation in three dimensions
  450. Rotational symmetry
  451. Rules of inference
  452. Runge–Kutta methods
  453. Scaling symmetries
  454. Scientific method
  455. Self-dual polyhedra
  456. Self-dual tilings
  457. Self-organization
  458. Semiregular tilings
  459. Separation axioms
  460. Sequence spaces
  461. Sequences and series
  462. Series expansions
  463. Set families
  464. Set indices on mathematics
  465. Sets of real numbers
  466. Several complex variables
  467. Shift-and-add algorithms
  468. Simplicial sets
  469. Singular integrals
  470. Singular value decomposition
  471. Smooth functions
  472. Smooth manifolds
  473. Snub tilings
  474. Sobolev spaces
  475. Sources of knowledge
  476. Space-filling polyhedra
  477. Spanning tree
  478. Sparse matrices
  479. Spatial data analysis
  480. Spatial gradient
  481. Spatial processes
  482. Special functions
  483. Spectral sequences
  484. Spherical trigonometry
  485. Spiric sections
  486. Splines (mathematics)
  487. Square tilings
  488. Stable distributions
  489. Star polygons
  490. Stochastic calculus
  491. Stochastic differential equations
  492. Stochastic models
  493. Stochastic processes
  494. Strongly regular graphs
  495. Structural analysis
  496. Structures on manifolds
  497. Summability methods
  498. Survival analysis
  499. Symmetric functions
  500. Symmetric relations
  501. Ternary operations
  502. Theta functions
  503. Three-dimensional coordinate systems
  504. Time domain analysis
  505. Time in science
  506. Transcendental numbers
  507. Transfer functions
  508. Transformation (function)
  509. Transforms
  510. Transitive relations
  511. Triangles of numbers
  512. Triangular tilings
  513. Trigonometric functions
  514. Trigonometry
  515. Truncated tilings
  516. Two-dimensional coordinate systems
  517. Types of databases
  518. Types of functions
  519. Unary operations
  520. Undecidable conjectures
  521. Unification (computer science)
  522. Uniform polyhedra
  523. Uniform spaces
  524. Uniform tilings
  525. Unitary operators
  526. Units of area
  527. Units of luminous intensity
  528. Units of plane angle
  529. Units of power
  530. Unsolved problems in mathematics
  531. Variables (mathematics)
  532. Variants of random walks
  533. Variational analysis
  534. Variational principles
  535. Vector bundles
  536. Vector calculus
  537. Vector spaces
  538. Vectors (mathematics and physics)
  539. Vertical position
  540. Wiener process
  541. Zeta and L-functions
  542. Δ-hyperbolic space

Theorems

  1. Automated theorem proving
  2. Central limit theorem
  3. Compactness theorems
  4. Fixed-point theorems
  5. Fundamental theorems
  6. Isomorphism theorems
  7. Mathematical theorems
  8. Probability theorems
  9. Statistical theorems
  10. Theorems about prime numbers
  11. Theorems in Fourier analysis
  12. Theorems in Riemannian geometry
  13. Theorems in abstract algebra
  14. Theorems in algebra
  15. Theorems in algebraic geometry
  16. Theorems in algebraic number theory
  17. Theorems in algebraic topology
  18. Theorems in analysis
  19. Theorems in analytic number theory
  20. Theorems in approximation theory
  21. Theorems in calculus
  22. Theorems in combinatorics
  23. Theorems in complex analysis
  24. Theorems in complex geometry
  25. Theorems in computational complexity theory
  26. Theorems in convex geometry
  27. Theorems in differential geometry
  28. Theorems in differential topology
  29. Theorems in discrete geometry
  30. Theorems in discrete mathematics
  31. Theorems in functional analysis
  32. Theorems in geometry
  33. Theorems in graph theory
  34. Theorems in group theory
  35. Theorems in harmonic analysis
  36. Theorems in linear algebra
  37. Theorems in measure theory
  38. Theorems in number theory
  39. Theorems in plane geometry
  40. Theorems in projective geometry
  41. Theorems in real analysis
  42. Theorems in representation theory
  43. Theorems in statistics
  44. Theorems in the foundations of mathematics
  45. Theorems in topology
  46. Theorems regarding stochastic processes

Theories

  1. Abelian group theory
  2. Additive number theory
  3. Algebraic K-theory
  4. Algebraic graph theory
  5. Algebraic number theory
  6. Analytic number theory
  7. Approximation theory
  8. Asymptotic theory (statistics)
  9. Axioms of set theory
  10. Basic concepts in infinite set theory
  11. Basic concepts in set theory
  12. Bifurcation theory
  13. Category theory
  14. Chaos theory
  15. Class field theory
  16. Classical control theory
  17. Coding theory
  18. Combinatorial game theory
  19. Complex systems theory
  20. Computability theory
  21. Computational number theory
  22. Computational problems in graph theory
  23. Conformal field theory
  24. Continuum theory
  25. Density functional theory
  26. Descriptive set theory
  27. Dimension theory
  28. Effective descriptive set theory
  29. Elementary number theory
  30. Ergodic theory
  31. Estimation theory
  32. Experiment (probability theory)
  33. Extremal graph theory
  34. Field theory
  35. Free probability theory
  36. Galois theory
  37. Game theory
  38. Geometric graph theory
  39. Geometric group theory
  40. Geometric transversal theory
  41. Graph minor theory
  42. Graph theory
  43. Graph theory objects
  44. Group theory
  45. Hidden variable theory
  46. Higher category theory
  47. Homology theory
  48. Homotopy theory
  49. Independence (probability theory)
  50. Infinite group theory
  51. Information theory
  52. Inner model theory
  53. Intersection theory
  54. Invariant theory
  55. Knot theory
  56. Large deviations theory
  57. Lattice theory
  58. Limits (category theory)
  59. Martingale theory
  60. Matching (graph theory)
  61. Matrix theory
  62. Matroid theory
  63. Measure theory
  64. Measures (measure theory)
  65. Metatheory
  66. Model theory
  67. Module theory
  68. Network theory
  69. Number theory
  70. Objects (category theory)
  71. Operator theory
  72. Order theory
  73. Paradoxes of naive set theory
  74. Paradoxes of set theory
  75. Perturbation theory
  76. Probability theory
  77. Probability theory paradoxes
  78. Queueing theory
  79. Ramsey theory
  80. Representation theory
  81. Representation theory of Lie algebras
  82. Representation theory of Lie groups
  83. Representation theory of algebraic groups
  84. Representation theory of finite groups
  85. Representation theory of groups
  86. Ring theory
  87. Scheme theory
  88. Semigroup theory
  89. Set theory
  90. Sheaf theory
  91. Singularity theory
  92. Spectral theory
  93. Squares in number theory
  94. Stability theory
  95. Statistical theory
  96. Structural complexity theory
  97. Summability theory
  98. Surgery theory
  99. Systems of set theory
  100. Systems theory
  101. Theorems in algebraic number theory
  102. Theorems in analytic number theory
  103. Theorems in approximation theory
  104. Theorems in computational complexity theory
  105. Theorems in graph theory
  106. Theorems in group theory
  107. Theorems in measure theory
  108. Theorems in number theory
  109. Theorems in representation theory
  110. Theory of computation
  111. Theory of probability distributions
  112. Topological graph theory
  113. Topos theory
  114. Trees (graph theory)
  115. Type theory
  116. Unitary representation theory

Algebra

  1. Abstract algebra
  2. Algebra of random variables
  3. Algebraic K-theory
  4. Algebraic combinatorics
  5. Algebraic curves
  6. Algebraic geometry
  7. Algebraic graph theory
  8. Algebraic groups
  9. Algebraic homogeneous spaces
  10. Algebraic logic
  11. Algebraic number theory
  12. Algebraic numbers
  13. Algebraic structures
  14. Algebraic surfaces
  15. Algebraic topology
  16. Algebraic varieties
  17. Banach algebras
  18. Boolean algebra
  19. C-algebras
  20. Clifford algebras
  21. Commutative algebra
  22. Composition algebras
  23. Computer algebra
  24. Diagram algebras
  25. Differential algebra
  26. Elementary algebra
  27. Exceptional Lie algebras
  28. Free algebraic structures
  29. Geometric algebra
  30. Homological algebra
  31. Hopf algebras
  32. Lie algebras
  33. Linear algebra
  34. Linear algebraic groups
  35. Multilinear algebra
  36. Non-associative algebra
  37. Non-associative algebras
  38. Nonlinear algebra
  39. Numerical linear algebra
  40. Ockham algebras
  41. Operator algebras
  42. Properties of Lie algebras
  43. Real algebraic geometry
  44. Representation theory of Lie algebras
  45. Representation theory of algebraic groups
  46. Super linear algebra
  47. Theorems in abstract algebra
  48. Theorems in algebra
  49. Theorems in algebraic geometry
  50. Theorems in algebraic number theory
  51. Theorems in algebraic topology
  52. Theorems in linear algebra
  53. Topological algebra
  54. Topological methods of algebraic geometry
  55. Universal algebra
  56. Von Neumann algebras

Statistics

  1. Applied probability
  2. Asymptotic theory (statistics)
  3. Bayesian statistics
  4. Biostatistics journals
  5. Computational statistics
  6. Computational statistics journals
  7. Directional statistics
  8. Experiment (probability theory)
  9. Free probability theory
  10. Functions related to probability distributions
  11. Independence (probability theory)
  12. Infinitely divisible probability distributions
  13. Location-scale family probability distributions
  14. Logic and statistics
  15. Multivariate statistics
  16. Nonparametric statistics
  17. Parametric statistics
  18. Probabilistic arguments
  19. Probabilistic inequalities
  20. Probability
  21. Probability and statistics
  22. Probability assessment
  23. Probability bounds analysis
  24. Probability fallacies
  25. Probability interpretations
  26. Probability problems
  27. Probability theorems
  28. Probability theory
  29. Probability theory paradoxes
  30. Robust statistics
  31. Sampling (statistics)
  32. Statistical algorithms
  33. Statistical approximations
  34. Statistical data types
  35. Statistical deviation and dispersion
  36. Statistical hypothesis testing
  37. Statistical inference
  38. Statistical methods
  39. Statistical paradoxes
  40. Statistical parameters
  41. Statistical randomness
  42. Statistical ratios
  43. Statistical theorems
  44. Statistical theory
  45. Statistics
  46. Statistics journals
  47. Statistics-related lists
  48. Summary statistics
  49. Tails of probability distributions
  50. Theorems in statistics
  51. Theory of probability distributions
  52. Types of probability distributions

Geometry

  1. Affine geometry
  2. Algebraic geometry
  3. Analytic geometry
  4. Arithmetic geometry
  5. Arithmetic problems of plane geometry
  6. Birational geometry
  7. Classical geometry
  8. Computational geometry
  9. Configurations (geometry)
  10. Conformal geometry
  11. Contact geometry
  12. Convex geometry
  13. Coordinate systems in differential geometry
  14. Descriptive geometry
  15. Differential geometry
  16. Differential geometry of surfaces
  17. Diophantine geometry
  18. Discrete geometry
  19. Elementary geometry
  20. Euclidean geometry
  21. Euclidean plane geometry
  22. Euclidean solid geometry
  23. Finite geometry
  24. Four-dimensional geometry
  25. Geometric algebra
  26. Geometric algorithms
  27. Geometric centers
  28. Geometric dissection
  29. Geometric graph theory
  30. Geometric graphs
  31. Geometric group theory
  32. Geometric inequalities
  33. Geometric measurement
  34. Geometric shapes
  35. Geometric topology
  36. Geometric transversal theory
  37. Geometry of divisors
  38. Geometry of numbers
  39. Geometry processing
  40. Honeycombs (geometry)
  41. Hyperbolic geometry
  42. Hypergeometric functions
  43. Incidence geometry
  44. Integral geometry
  45. Metric geometry
  46. Multi-dimensional geometry
  47. Non-Euclidean geometry
  48. Noncommutative geometry
  49. Orientation (geometry)
  50. Projective geometry
  51. Real algebraic geometry
  52. Riemannian geometry
  53. Special hypergeometric functions
  54. Spherical geometry
  55. Symplectic geometry
  56. Systolic geometry
  57. Theorems in Riemannian geometry
  58. Theorems in algebraic geometry
  59. Theorems in complex geometry
  60. Theorems in convex geometry
  61. Theorems in differential geometry
  62. Theorems in discrete geometry
  63. Theorems in geometry
  64. Theorems in plane geometry
  65. Theorems in projective geometry
  66. Topological methods of algebraic geometry
  67. Triangle geometry
  68. Triangulation (geometry)

Topology

  1. Algebraic topology
  2. Computational topology
  3. Differential topology
  4. General topology
  5. Geometric topology
  6. Properties of topological spaces
  7. Symplectic topology
  8. Theorems in algebraic topology
  9. Theorems in differential topology
  10. Theorems in topology
  11. Topological algebra
  12. Topological graph theory
  13. Topological groups
  14. Topological methods of algebraic geometry
  15. Topological spaces
  16. Topological vector spaces
  17. Topology of Lie groups
  18. Topology of function spaces
  19. Topology of homogeneous spaces
  20. Trees (topology)

Groups

  1. Abelian group theory
  2. Algebraic groups
  3. Braid groups
  4. Coxeter groups
  5. Discrete groups
  6. Finite groups
  7. Functional subgroups
  8. Geometric group theory
  9. Group actions (mathematics)
  10. Group theory
  11. Infinite group theory
  12. Kleinian groups
  13. Lie groups
  14. Linear algebraic groups
  15. Ordered groups
  16. Permutation groups
  17. Properties of groups
  18. Quantum groups
  19. Representation theory of Lie groups
  20. Representation theory of algebraic groups
  21. Representation theory of finite groups
  22. Representation theory of groups
  23. Semigroup theory
  24. Solvable groups
  25. Sporadic groups
  26. Subgroup properties
  27. Theorems in group theory
  28. Topological groups
  29. Topology of Lie groups