HandWiki:Math

From HandWiki
Jump to: navigation, search


Handwiki math.svg Mathematics

Mathematics (from Greek "knowledge, study, learning") includes the study of such topics as quantity (number theory), structure (algebra), space (geometry), and change (mathematical analysis).     [Add article].



List of Categories

0

Main topics

  1. 3-manifolds
  2. Abelian varieties
  3. Additive combinatorics
  4. Amount of substance
  5. Analysis of algorithms
  6. Analysis of variance
  7. Analytic functions
  8. Applied mathematics
  9. Approximation algorithms
  10. Approximations
  11. Argument mapping
  12. Arithmetic
  13. Arithmetic functions
  14. Articles containing proofs
  15. Asymptotic analysis
  16. Axiom of choice
  17. Banach spaces
  18. Bayesian estimation
  19. Bayesian inference
  20. Behavior selection algorithms
  21. Bilinear operators
  22. Binary arithmetic
  23. Binary operations
  24. Binary relations
  25. Boundary conditions
  26. Cache coherency
  27. Cardinal numbers
  28. Categorical logic
  29. Causal diagrams
  30. Chaotic maps
  31. Classes of prime numbers
  32. Classical logic
  33. Classification algorithms
  34. Closure operators
  35. Clustering criteria
  36. Combinatorial algorithms
  37. Combinatorial optimization
  38. Combinatorics
  39. Compactness (mathematics)
  40. Complex analysis
  41. Complex dynamics
  42. Complex manifolds
  43. Complex numbers
  44. Complex surfaces
  45. Computational fields of study
  46. Concepts in logic
  47. Conceptual modelling
  48. Conditionals
  49. Conformal mapping
  50. Conformal projections
  51. Conic sections
  52. Conjectures
  53. Conjugate prior distributions
  54. Connection (mathematics)
  55. Conservation equations
  56. Constructivism (mathematics)
  57. Continuous distributions
  58. Continuous integration
  59. Continuous mappings
  60. Continuous wavelets
  61. Convergence (mathematics)
  62. Convex analysis
  63. Convex optimization
  64. Coordinate systems
  65. Covariance and correlation
  66. Covering lemmas
  67. Curvature (mathematics)
  68. Deductive reasoning
  69. Definitions of mathematical integration
  70. Design of experiments
  71. Determinants
  72. Deterministic global optimization
  73. Dichotomies
  74. Differential calculus
  75. Differential equations
  76. Differential forms
  77. Differential operators
  78. Differentiation rules
  79. Dimension reduction
  80. Dimensionless numbers
  81. Diophantine equations
  82. Directed graphs
  83. Discrete distributions
  84. Discrete mathematics
  85. Discrete transforms
  86. Divergent series
  87. Division (mathematics)
  88. Divisor function
  89. Dynamical systems
  90. Educational technology
  91. Elementary arithmetic
  92. Elementary mathematics
  93. Elementary shapes
  94. Elementary special functions
  95. Elliptic curves
  96. Elliptic functions
  97. Enumerative combinatorics
  98. Equal-area projections
  99. Equations of fluid dynamics
  100. Equivalence (mathematics)
  101. Error detection and correction
  102. Errors and residuals
  103. Estimation of densities
  104. Euclidean symmetries
  105. Exponential family distributions
  106. Exponentials
  107. Factor analysis
  108. Factorial and binomial topics
  109. Fields of mathematics
  110. Finite automata
  111. Finite differences
  112. Finite element method
  113. Finite fields
  114. Forcing (mathematics)
  115. Formal sciences
  116. Formal systems
  117. Fourier analysis
  118. Fourier series
  119. Fractal curves
  120. Fractions (mathematics)
  121. Frequency distribution
  122. Fréchet spaces
  123. Functional analysis
  124. Functional equations
  125. Functions and mappings
  126. Fuzzy logic
  127. Gambling terminology
  128. Gamma and related functions
  129. Gaussian function
  130. Generalizations of the derivative
  131. Generalized functions
  132. Generalized manifolds
  133. Generating functions
  134. Geodesic (mathematics)
  135. Glossaries of mathematics
  136. Glossary of areas of mathematics
  137. Graph algorithms
  138. Graph connectivity
  139. Graph data structures
  140. Graph drawing
  141. Graph families
  142. Graph invariants
  143. Harmonic analysis
  144. Harmonic functions
  145. Hexadecimal numeral system
  146. Hierarchy of functions
  147. Hilbert space
  148. Hilbert's problems
  149. Homogeneous spaces
  150. Horizontal coordinate system
  151. Hypotheses
  152. Immediate inference
  153. Inequalities
  154. Information
  155. Integer factorization algorithms
  156. Integer sequences
  157. Integrable systems
  158. Integral calculus
  159. Integral equations
  160. Integral representations
  161. Integral transforms
  162. Integration on manifolds
  163. International System of Units
  164. Interpolation
  165. Intersection classes of graphs
  166. Inverse functions
  167. Irrational numbers
  168. Knot invariants
  169. Knowledge representation
  170. Lambda calculus
  171. Large cardinals
  172. Large integers
  173. Large numbers
  174. Lattice points
  175. Limit sets
  176. Limits (mathematics)
  177. Linear operators
  178. Linear operators in calculus
  179. Localization (mathematics)
  180. Logarithms
  181. Logic symbols
  182. Logical connectives
  183. Logical consequence
  184. Logical expressions
  185. Logical truth
  186. Lorentzian manifolds
  187. Loss functions
  188. Lévy processes
  189. Many-valued logic
  190. Map projections
  191. Maps of manifolds
  192. Markov chain Monte Carlo
  193. Markov models
  194. Markov processes
  195. Mathematical analysis
  196. Mathematical and quantitative methods (economics)
  197. Mathematical axioms
  198. Mathematical chemistry
  199. Mathematical concepts
  200. Mathematical constants
  201. Mathematical identities
  202. Mathematical logic
  203. Mathematical methods in general relativity
  204. Mathematical modeling
  205. Mathematical notation
  206. Mathematical optimization
  207. Mathematical physics
  208. Mathematical principles
  209. Mathematical problems
  210. Mathematical relations
  211. Mathematical series
  212. Mathematical structures
  213. Mathematical tables
  214. Mathematical terminology
  215. Mathematics
  216. Mathematics of infinitesimals
  217. Mathematics of rigidity
  218. Mathematics paradoxes
  219. Mathematics-related lists
  220. Matrix decompositions
  221. Matrix normal forms
  222. Measures of complexity
  223. Metric tensors
  224. Minimal surfaces
  225. Minkowski spacetime
  226. Modal logic
  227. Modular forms
  228. Moment (mathematics)
  229. Monte Carlo methods
  230. Multiplication
  231. Multivariable calculus
  232. Multivariate interpolation
  233. Necessity and sufficiency
  234. Non-classical logic
  235. Non-standard analysis
  236. Nonlinear functional analysis
  237. Nonlinear systems
  238. Normal distribution
  239. Norms (mathematics)
  240. Numeral systems
  241. Numerical analysis
  242. Numerical differential equations
  243. Numerical function drawing
  244. Obfuscation
  245. Operations research
  246. Optimal decisions
  247. Optimization algorithms and methods
  248. Ordinal numbers
  249. Ordinary differential equations
  250. Orthogonal polynomials
  251. Orthogonal wavelets
  252. Oscillation
  253. Parabolic partial differential equations
  254. Paradoxes of infinity
  255. Parametric families of graphs
  256. Parity (mathematics)
  257. Partial differential equations
  258. Paul Dirac
  259. Perfect graphs
  260. Permutations
  261. Planar graphs
  262. Point processes
  263. Poisson distribution
  264. Poisson point processes
  265. Polynomial functions
  266. Polynomials
  267. Predicate logic
  268. Prime numbers
  269. Problem structuring methods
  270. Propositional calculus
  271. Pseudorandomness
  272. Quadratic forms
  273. Quadrilaterals
  274. Quality control tools
  275. Quantification
  276. Quaternions
  277. Quotient objects
  278. Random graphs
  279. Random matrices
  280. Randomized algorithms
  281. Rational numbers
  282. Real analysis
  283. Real closed field
  284. Real numbers
  285. Real transcendental numbers
  286. Recurrence relations
  287. Regression analysis
  288. Regular graphs
  289. Riemann surfaces
  290. Root-finding algorithms
  291. Rotation in three dimensions
  292. Rotational symmetry
  293. Rules of inference
  294. Runge–Kutta methods
  295. Scaling symmetries
  296. Scientific method
  297. Self-organization
  298. Separation axioms
  299. Sequence spaces
  300. Sequences and series
  301. Series expansions
  302. Set families
  303. Sets of real numbers
  304. Several complex variables
  305. Simplicial sets
  306. Singular value decomposition
  307. Smooth functions
  308. Smooth manifolds
  309. Sobolev spaces
  310. Sources of knowledge
  311. Spanning tree
  312. Sparse matrices
  313. Spatial data analysis
  314. Spatial gradient
  315. Spatial processes
  316. Special functions
  317. Spectral sequences
  318. Spherical trigonometry
  319. Splines (mathematics)
  320. Stable distributions
  321. Stochastic calculus
  322. Stochastic differential equations
  323. Stochastic models
  324. Stochastic processes
  325. Strongly regular graphs
  326. Structural analysis
  327. Structures on manifolds
  328. Summability methods
  329. Survival analysis
  330. Symmetric functions
  331. Symmetric relations
  332. Syntax (logic)
  333. Systems of formal logic
  334. Tensors in general relativity
  335. Term logic
  336. Ternary operations
  337. Time domain analysis
  338. Time in science
  339. Transcendental numbers
  340. Transformation (function)
  341. Transforms
  342. Transitive relations
  343. Trigonometry
  344. Types of databases
  345. Types of functions
  346. UCUM base units
  347. Unary operations
  348. Undecidable conjectures
  349. Unification (computer science)
  350. Unitary operators
  351. Units of area
  352. Units of energy
  353. Units of luminous intensity
  354. Units of temperature
  355. Unsolved problems in mathematics
  356. Variants of random walks
  357. Variational analysis
  358. Variational principles
  359. Vector bundles
  360. Vector calculus
  361. Vector spaces
  362. Vectors (mathematics and physics)
  363. Vertical position
  364. Wiener process
  365. Zeta and L-functions

Theorems

  1. Automated theorem proving
  2. Compactness theorems
  3. Fundamental theorems
  4. Mathematical theorems
  5. Probability theorems
  6. Statistical mechanics theorems
  7. Statistical theorems
  8. Theorems about prime numbers
  9. Theorems in Fourier analysis
  10. Theorems in algebra
  11. Theorems in algebraic geometry
  12. Theorems in algebraic topology
  13. Theorems in analysis
  14. Theorems in analytic number theory
  15. Theorems in calculus
  16. Theorems in combinatorics
  17. Theorems in complex analysis
  18. Theorems in computational complexity theory
  19. Theorems in convex geometry
  20. Theorems in differential geometry
  21. Theorems in discrete mathematics
  22. Theorems in functional analysis
  23. Theorems in geometry
  24. Theorems in graph theory
  25. Theorems in harmonic analysis
  26. Theorems in linear algebra
  27. Theorems in measure theory
  28. Theorems in number theory
  29. Theorems in plane geometry
  30. Theorems in propositional logic
  31. Theorems in real analysis
  32. Theorems in representation theory
  33. Theorems in the foundations of mathematics
  34. Theorems in topology

Theories

  1. Abelian group theory
  2. Algebraic graph theory
  3. Algebraic number theory
  4. Analytic number theory
  5. Approximation theory
  6. Asymptotic theory (statistics)
  7. Basic concepts in infinite set theory
  8. Basic concepts in set theory
  9. Category theory
  10. Chaos theory
  11. Classical control theory
  12. Coding theory
  13. Complex systems theory
  14. Computability theory
  15. Computational problems in graph theory
  16. Conformal field theory
  17. Continuum theory
  18. Descriptive set theory
  19. Dimension theory
  20. Elementary number theory
  21. Ergodic theory
  22. Estimation theory
  23. Experiment (probability theory)
  24. Extremal graph theory
  25. Field theory
  26. Geometric graph theory
  27. Geometric group theory
  28. Graph minor theory
  29. Graph theory
  30. Graph theory objects
  31. Group theory
  32. Higher category theory
  33. Homology theory
  34. Homotopy theory
  35. Independence (probability theory)
  36. Infinite group theory
  37. Information theory
  38. Inner model theory
  39. Invariant theory
  40. Knot theory
  41. Large deviations theory
  42. Lattice theory
  43. Limits (category theory)
  44. Martingale theory
  45. Matrix theory
  46. Matroid theory
  47. Measure theory
  48. Measures (measure theory)
  49. Metatheory
  50. Model theory
  51. Network theory
  52. Number theory
  53. Objects (category theory)
  54. Operator theory
  55. Order theory
  56. Perturbation theory
  57. Probability theory
  58. Probability theory paradoxes
  59. Proof theory
  60. Quantum information theory
  61. Queueing theory
  62. Ramsey theory
  63. Representation theory
  64. Representation theory of Lie algebras
  65. Representation theory of Lie groups
  66. Representation theory of groups
  67. Ring theory
  68. Scheme theory
  69. Semigroup theory
  70. Set theory
  71. Sheaf theory
  72. Singularity theory
  73. Spectral theory
  74. Stability theory
  75. Statistical theory
  76. String theory
  77. Structural complexity theory
  78. Summability theory
  79. Systems of set theory
  80. Theorems in analytic number theory
  81. Theorems in computational complexity theory
  82. Theorems in graph theory
  83. Theorems in measure theory
  84. Theorems in number theory
  85. Theorems in representation theory
  86. Theory of computation
  87. Theory of probability distributions
  88. Topological graph theory
  89. Topos theory
  90. Trees (graph theory)
  91. Type theory
  92. Unitary representation theory

Algebra

  1. Abstract algebra
  2. Algebra of random variables
  3. Algebraic combinatorics
  4. Algebraic curves
  5. Algebraic geometry
  6. Algebraic graph theory
  7. Algebraic groups
  8. Algebraic homogeneous spaces
  9. Algebraic logic
  10. Algebraic number theory
  11. Algebraic numbers
  12. Algebraic structures
  13. Algebraic surfaces
  14. Algebraic topology
  15. Algebraic varieties
  16. Banach algebras
  17. Boolean algebra
  18. C-algebras
  19. Clifford algebras
  20. Commutative algebra
  21. Composition algebras
  22. Computer algebra
  23. Differential algebra
  24. Elementary algebra
  25. Exceptional Lie algebras
  26. Free algebraic structures
  27. Geometric algebra
  28. Homological algebra
  29. Hopf algebras
  30. Lie algebras
  31. Linear algebra
  32. Linear algebraic groups
  33. Multilinear algebra
  34. Non-associative algebra
  35. Numerical linear algebra
  36. Operator algebras
  37. Real algebraic geometry
  38. Representation theory of Lie algebras
  39. Theorems in algebra
  40. Theorems in algebraic geometry
  41. Theorems in algebraic topology
  42. Theorems in linear algebra
  43. Topological methods of algebraic geometry
  44. Universal algebra
  45. Von Neumann algebras

Statistics

  1. Applied probability
  2. Asymptotic theory (statistics)
  3. Bayesian statistics
  4. Computational statistics
  5. Experiment (probability theory)
  6. Functions related to probability distributions
  7. Independence (probability theory)
  8. Infinitely divisible probability distributions
  9. Logic and statistics
  10. Multivariate statistics
  11. Nonparametric statistics
  12. Parametric statistics
  13. Probabilistic arguments
  14. Probabilistic inequalities
  15. Probability
  16. Probability and statistics
  17. Probability assessment
  18. Probability interpretations
  19. Probability problems
  20. Probability theorems
  21. Probability theory
  22. Probability theory paradoxes
  23. Robust statistics
  24. Sampling (statistics)
  25. Statistical algorithms
  26. Statistical approximations
  27. Statistical data types
  28. Statistical deviation and dispersion
  29. Statistical hypothesis testing
  30. Statistical inference
  31. Statistical mechanics theorems
  32. Statistical methods
  33. Statistical paradoxes
  34. Statistical parameters
  35. Statistical randomness
  36. Statistical ratios
  37. Statistical theorems
  38. Statistical theory
  39. Statistics
  40. Statistics-related lists
  41. Summary statistics
  42. Theory of probability distributions
  43. Types of probability distributions

Geometry

  1. Affine geometry
  2. Algebraic geometry
  3. Analytic geometry
  4. Arithmetic geometry
  5. Classical geometry
  6. Computational geometry
  7. Conformal geometry
  8. Contact geometry
  9. Convex geometry
  10. Coordinate systems in differential geometry
  11. Differential geometry
  12. Differential geometry of surfaces
  13. Diophantine geometry
  14. Discrete geometry
  15. Elementary geometry
  16. Euclidean geometry
  17. Euclidean plane geometry
  18. Finite geometry
  19. Geometric algebra
  20. Geometric algorithms
  21. Geometric centers
  22. Geometric graph theory
  23. Geometric graphs
  24. Geometric group theory
  25. Geometric inequalities
  26. Geometric measurement
  27. Geometric shapes
  28. Geometric topology
  29. Geometry of numbers
  30. Geometry processing
  31. Hyperbolic geometry
  32. Hypergeometric functions
  33. Incidence geometry
  34. Metric geometry
  35. Multi-dimensional geometry
  36. Non-Euclidean geometry
  37. Noncommutative geometry
  38. Orientation (geometry)
  39. Projective geometry
  40. Real algebraic geometry
  41. Riemannian geometry
  42. Special hypergeometric functions
  43. Spherical geometry
  44. Symplectic geometry
  45. Theorems in algebraic geometry
  46. Theorems in convex geometry
  47. Theorems in differential geometry
  48. Theorems in geometry
  49. Theorems in plane geometry
  50. Topological methods of algebraic geometry
  51. Triangle geometry
  52. Triangulation (geometry)

Topology

  1. Algebraic topology
  2. Computational topology
  3. Differential topology
  4. General topology
  5. Geometric topology
  6. Properties of topological spaces
  7. Theorems in algebraic topology
  8. Theorems in topology
  9. Topological graph theory
  10. Topological groups
  11. Topological methods of algebraic geometry
  12. Topological spaces
  13. Topological vector spaces
  14. Topology of Lie groups
  15. Topology of function spaces
  16. Trees (topology)

Groups

  1. Abelian group theory
  2. Algebraic groups
  3. Discrete groups
  4. Finite groups
  5. Geometric group theory
  6. Group theory
  7. Infinite group theory
  8. Kleinian groups
  9. Lie groups
  10. Linear algebraic groups
  11. Ordered groups
  12. Properties of groups
  13. Representation theory of Lie groups
  14. Representation theory of groups
  15. Semigroup theory
  16. Sporadic groups
  17. Subgroup properties
  18. Topological groups
  19. Topology of Lie groups