Biography:Alfred Hübler
Alfred Hübler | |
---|---|
Research physicist and director of the Center for Complex Systems Research | |
Born | Munich, Germany | May 16, 1957
Died | January 27, 2018 | (aged 60)
Nationality | United States |
Alma mater | Technical University of Munich |
Scientific career | |
Fields | Physics |
Institutions | University of Illinois at Urbana-Champaign |
Alfred Wilhelm Hübler (May 16, 1957 – January 27, 2018) was a German-born research physicist at the University of Illinois at Urbana-Champaign (UIUC) Frederick Seitz Materials Research Laboratory as well as a tenured faculty member in the University of Illinois Department of Physics. He was the director of the Center for Complex Systems Research (CCSR) and an external faculty member of the Santa Fe Institute.[1]
Biography
Alfred Hübler was born in Munich, West Germany in 1957. He earned a doctorate in Nuclear Condensed Matter Physics from the Technical University of Munich in 1983. His Ph.D. research was on controlling chaos and fractal particle agglomeration processes. After his Ph.D., Hubler joined Hermann Haken's synergetics group at the University of Stuttgart as a post doctoral researcher.
Hübler became a faculty member of the Department of Physics at the University of Illinois at Urbana-Champaign in 1989. He was also a long-time external faculty member of New Mexico's Santa Fe Institute. From 1993 to 1994, he was a Toshiba chair professor at Keio University in Tokio, Japan. He was Executive Editor of the journal Complexity.[2]
Hübler published more than 50 papers in peer reviewed journals about his experimental and theoretical research on complex systems. His 2008 publication, entitled "A simple, low-cost data-logging pendulum built from a computer mouse" [3] is one of the most downloaded papers of all Institute of Physics journal articles (in the top 3%). The American Physical Society (APS) listed his paper on mixed reality on the APS tipsheet and invited him to give a press conference on this topic at the 2008 March meeting. Hübler has a 1997 US patent on minimum dissipation quantum-dot transistors and in 2009 the UIUC filed a patent in his name on digital quantum batteries.
Hübler died in 2018 from lymphoma.[4]
Research interests
Concepts governing the dynamics and structure of emergent patterns in open dissipative systems; mixed reality; prediction and control of fractal network dynamics; entrainment of cancer cells; energy conversion, storage, and distribution; dissipate wave-particle systems; solitons; homeopathy;[5] flames and shock waves; turbulence; reverse osmosis and filtration with fractal absorbers; conceptual networks; quantitative measures for knowledge and intelligence; natural language parsing.
Publications
Here are some of Hübler's more important publications:
- Dinkelacker F.; Hübler A.; Lüscher E. (1987). "Pattern formation of powder on a vibrating disc". Biol. Cybern 56: 51–56. doi:10.1007/bf00333067.
- Cremers J.; Hübler A. (1987). "Construction of differential equations from experimental data". Z. Naturforsch. 42a (8): 797–802. doi:10.1515/zna-1987-0805. Bibcode: 1987ZNatA..42..797C. https://www.degruyter.com/view/j/zna.1987.42.issue-8/zna-1987-0805/zna-1987-0805.xml.
- Hübler A.; Lüscher E. (1989). "Resonant Stimulation and Control of Nonlinear Oscillators". Naturwissenschaften 76 (2): 67–69. doi:10.1007/BF00396707. Bibcode: 1989NW.....76...67H.
- Hübler A (1989). "Adaptive Control of Chaotic Systems". Helv. Phys. Acta 62: 343–346.
- Wittmann R.; Kautzky T.; Hübler A.; Lüscher E. (1991). "A simple experiment for the examination of dendritic river systems". Naturwissenschaften 78 (1): 23–25. doi:10.1007/bf01134037. Bibcode: 1991NW.....78...23W.
- Sperl M.; Chang A.; Weber N.; Hübler A. (1999). "Hebbian learning in the agglomeration of conducting particles". Phys. Rev. E 59 (3): 3165–3168. doi:10.1103/physreve.59.3165. Bibcode: 1999PhRvE..59.3165S.
- Melby P.; Kaidel J.; Weber N.; Hübler A. (2000). "Adaptation to the edge of chaos in the self-adjusting logistic map". Phys. Rev. Lett. 84 (26): 5991–5993. doi:10.1103/physrevlett.84.5991. PMID 10991106. Bibcode: 2000PhRvL..84.5991M.
- Strelioff C.; Hübler A. (2006). "Medium term prediction of chaos". Phys. Rev. Lett. 96 (4): 044101. doi:10.1103/physrevlett.96.044101. PMID 16486826. Bibcode: 2006PhRvL..96d4101S.
- Singleton M.S.; Hübler A. (2007). "Learning rate and attractor size of the single-layer perceptrons". Phys. Rev. E 75 (2): 057201. doi:10.1103/physreve.75.026704. PMID 17358448. Bibcode: 2007PhRvE..75b6704S.
- Hübler A.; Osuagwu O. (2010). "Digital Quantum Batteries: Energy and information storage in nano vacuum, tube arrays". Complexity 15 (5): 48–55. doi:10.1002/cplx.20306.
- Soni V.; Ketisch P.; Rodriguez J.; Shpunt A.; Hubler A. (2011). "Topological similarities in electrical and hydrological drainage networks". J. Appl. Phys. 109 (3): 036103–036103–3. doi:10.1063/1.3533389. Bibcode: 2011JAP...109c6103S.
- A. Hubler et al. (2013), "Nano Vacuum Tube Arrays for Energy Storage", US Patent, No. 8,699,206.
- Hubler A.; Lyon David (2013). "Gap Size Dependence of the Dielectric Strength in Nano Vacuum Gaps". IEEE Transactions on Dielectrics and Electrical Insulation 20 (4): 1467–1471. doi:10.1109/TDEI.2013.6571470.
- Hubler A.; Tomicic M. (2013). "Star Shaped Solids: Objects with a Negative Dimension". Complexity 19 (3): 7–9. doi:10.1002/cplx.21488. Bibcode: 2014Cmplx..19c...7H.
- Hubler A (2013). "Synthetic Atoms: Large energy density and record power density". Complexity 18 (4): 12–14. doi:10.1002/cplx.21440. Bibcode: 2013Cmplx..18d..12H.
- E. Shinn, A. Hubler, D. Lyon, M. Grosse-Perdekamp, A. Bezryadin, and A. Belkin (2013), "Nuclear Energy Conversion with Stacks of Graphene Nano-capacitors", Complexity 18 (3): 24-27 (won DOE Nuclear Fuel Cycle Innovation Award).
- A. Hubler and D. Lyon, (2014). "Gap Size Dependence of the Dielectric Strength in Nano Vacuum Gaps". IEEE Trans. Dielectr. Electr. Insul. 20, 4, 1467-1471
- Belkin A.; Hubler A.; Bezryadin A. (2015). "Self-Assembled Wiggling Nano-Structures and the Principle of Maximum Entropy Production". Sci. Rep. 5: 8323. doi:10.1038/srep08323. PMID 25662746. Bibcode: 2015NatSR...5E8323B.
- Stephenson C.; Hubler A. (2015). "Stability and conductivity of self assembled wires in a transverse electric field". Sci. Rep. 5: 15044. doi:10.1038/srep15044. PMID 26463476. Bibcode: 2015NatSR...515044S.
- Stephenson C., Lyon; D., Hubler A. (2017). "Topological properties of a self-assembled electrical network via ab initio calculation". Sci. Rep. 5: 15044. doi:10.1038/srep41621. PMID 28155863. Bibcode: 2017NatSR...741621S.
- Belkin A.; Bezryadin A.; Hendren L.; Hubler A. (2017). "Recovery of Alumina Nanocapacitors after High Voltage Breakdown". Sci. Rep. 5 (1): 15044. doi:10.1038/s41598-017-01007-9. PMID 28428625. Bibcode: 2017NatSR...7..932B.
- Bezryadin A.; Belkin A.; E. Ilin; M. Pak; E.Colla; Hubler A. (2017). "Large energy storage efficiency of the dielectric layer of graphene nanocapacitors". Nanotechnology 28 (49): 495401. doi:10.1088/1361-6528/aa935c. PMID 29027908. Bibcode: 2017Nanot..28W5401B.
References
- ↑ "Alfred Hubler". http://www.news-gazette.com/obituaries/2018-01-31/alfred-hubler.html.
- ↑ "Complexity". Complexity. doi:10.1002/(issn)1099-0526.
- ↑ V. Gintautas; A. Hübler (2009). "A simple, low-cost data-logging pendulum built from a computer mouse". Physics Education 44 (5): 488–491. doi:10.1088/0031-9120/44/5/006. Bibcode: 2009PhyEd..44..488G.
- ↑ "Alfred Wilhelm Hubler 1957-2018". https://physics.illinois.edu/people/memorials/24474.
- ↑ Hübler Alfred W (2008). ""Homeopathic" dynamical systems". Complexity 13 (3): 8–11. doi:10.1002/cplx.20220. Bibcode: 2008Cmplx..13c...8H.
External links
- Center for Complex Systems Research
- David Talbot (21 December 2009). "A Quantum Leap in Battery Design". http://www.technologyreview.com/computing/24265/.
- APS Physics Tip Sheet #68