Carathéodory's theorem (convex hull)

From HandWiki
Short description: Point in the convex hull of a set P in Rd, is the convex combination of d+1 points in P

Carathéodory's theorem is a theorem in convex geometry. It states that if a point [math]\displaystyle{ x }[/math] lies in the convex hull [math]\displaystyle{ \mathrm{Conv}(P) }[/math] of a set [math]\displaystyle{ P\subset \R^d }[/math], then [math]\displaystyle{ x }[/math] can be written as the convex combination of at most [math]\displaystyle{ d+1 }[/math] points in [math]\displaystyle{ P }[/math]. More sharply, [math]\displaystyle{ x }[/math] can be written as the convex combination of at most [math]\displaystyle{ d+1 }[/math] extremal points in [math]\displaystyle{ P }[/math], as non-extremal points can be removed from [math]\displaystyle{ P }[/math] without changing the membership of [math]\displaystyle{ x }[/math] in the convex hull.

Its equivalent theorem for conical combinations states that if a point [math]\displaystyle{ x }[/math] lies in the conical hull [math]\displaystyle{ \mathrm{Cone}(P) }[/math] of a set [math]\displaystyle{ P\subset \R^d }[/math], then [math]\displaystyle{ x }[/math] can be written as the conical combination of at most [math]\displaystyle{ d }[/math] points in [math]\displaystyle{ P }[/math].[1]:257

The similar theorems of Helly and Radon are closely related to Carathéodory's theorem: the latter theorem can be used to prove the former theorems and vice versa.[2]

The result is named for Constantin Carathéodory, who proved the theorem in 1911 for the case when [math]\displaystyle{ P }[/math] is compact.[3] In 1914 Ernst Steinitz expanded Carathéodory's theorem for arbitrary set.[4]

Example

An illustration of Carathéodory's theorem for a square in R2

Carathéodory's theorem in 2 dimensions states that we can construct a triangle consisting of points from P that encloses any point in the convex hull of P.

For example, let P = {(0,0), (0,1), (1,0), (1,1)}. The convex hull of this set is a square. Let x = (1/4, 1/4) in the convex hull of P. We can then construct a set {(0,0),(0,1),(1,0)} = P′, the convex hull of which is a triangle and encloses x.

Proof

Note: We will only use the fact that [math]\displaystyle{ \R }[/math] is an ordered field, so the theorem and proof works even when [math]\displaystyle{ \R }[/math] is replaced by any field [math]\displaystyle{ \mathbb F }[/math], together with a total order.

We first formally state Carathéodory's theorem:[5]

Carathéodory's theorem — If [math]\displaystyle{ x \in \mathrm{Cone}(S) \subset \R^d }[/math], then [math]\displaystyle{ x }[/math] is the nonnegative sum of at most [math]\displaystyle{ d }[/math] points of [math]\displaystyle{ S }[/math].

If [math]\displaystyle{ x \in \mathrm{Conv}(S) \subset \R^d }[/math], then [math]\displaystyle{ x }[/math] is the convex sum of at most [math]\displaystyle{ d+1 }[/math] points of [math]\displaystyle{ S }[/math].

The essence of Carathéodory's theorem is in the finite case. This reduction to the finite case is possible because [math]\displaystyle{ \mathrm{Conv}(S) }[/math] is the set of finite convex combination of elements of [math]\displaystyle{ S }[/math] (see the convex hull page for details).

Lemma — If [math]\displaystyle{ q_1, ..., q_N \in \R^d }[/math] then [math]\displaystyle{ \forall x \in \mathrm{Conv}(\{q_1, ..., q_N\}) }[/math], exists [math]\displaystyle{ w_1, ..., w_N \geq 0 }[/math] such that [math]\displaystyle{ x = \sum_n w_n q_n }[/math], and at most [math]\displaystyle{ d }[/math] of them are nonzero.

With the lemma, Carathéodory's theorem is a simple extension:

Alternative proofs uses Helly's theorem or the Perron–Frobenius theorem.[6][7]

Variants

Carathéodory's number

For any nonempty [math]\displaystyle{ P\subset \R^d }[/math], define its Carathéodory's number to be the smallest integer [math]\displaystyle{ r }[/math], such that for any [math]\displaystyle{ x\in \mathrm{Conv}(P) }[/math], there exists a representation of [math]\displaystyle{ x }[/math] as a convex sum of up to [math]\displaystyle{ r }[/math] elements in [math]\displaystyle{ P }[/math].

Carathéodory's theorem simply states that any nonempty subset of [math]\displaystyle{ \R^d }[/math] has Carathéodory's number [math]\displaystyle{ \leq d+1 }[/math]. This upper bound is not necessarily reached. For example, the unit sphere in [math]\displaystyle{ \R^d }[/math] has Carathéodory's number equal to 2, since any point inside the sphere is the convex sum of two points on the sphere.

With additional assumptions on [math]\displaystyle{ P\subset \R^d }[/math], upper bounds strictly lower than [math]\displaystyle{ d+1 }[/math] can be obtained.[8]

Dimensionless variant

Recently, Adiprasito, Barany, Mustafa and Terpai proved a variant of Caratheodory's theorem that does not depend on the dimension of the space.[9]

Colorful Carathéodory theorem

Let X1, ..., Xd+1 be sets in Rd and let x be a point contained in the intersection of the convex hulls of all these d+1 sets.

Then there is a set T = {x1, ..., xd+1}, where x1X1, ..., xd+1Xd+1, such that the convex hull of T contains the point x.[10]

By viewing the sets X1, ..., Xd+1 as different colors, the set T is made by points of all colors, hence the "colorful" in the theorem's name.[11] The set T is also called a rainbow simplex, since it is a d-dimensional simplex in which each corner has a different color.[12]

This theorem has a variant in which the convex hull is replaced by the conical hull.[10]:Thm.2.2 Let X1, ..., Xd be sets in Rd and let x be a point contained in the intersection of the conical hulls of all these d sets. Then there is a set T = {x1, ..., xd}, where x1X1, ..., xdXd, such that the conical hull of T contains the point x.[10]

Mustafa and Ray extended this colorful theorem from points to convex bodies.[12]

The computational problem of finding the colorful set lies in the intersection of the complexity classes PPAD and PLS.[13]

See also

Notes

  1. Lovász, László; Plummer, M. D. (1986), Matching Theory, Annals of Discrete Mathematics, 29, North-Holland, ISBN 0-444-87916-1 
  2. Danzer, L.; Grünbaum, B.; Klee, V. (1963). "Convexity". 7. American Mathematical Society. pp. 101–179.  See in particular p.109
  3. Carathéodory, C. (1911). "Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen" (in de). Rendiconti del Circolo Matematico di Palermo (1884–1940) 32 (1): 193–217[see p.200 bottom]. doi:10.1007/BF03014795. https://link.springer.com/article/10.1007%2FBF03014795. 
  4. Steinitz, Ernst (1913). "Bedingt konvergente Reihen und konvexe Systeme". J. Reine Angew. Math. 1913 (143): 128–175. doi:10.1515/crll.1913.143.128. 
  5. Leonard, I. Ed; Lewis, J. E. (2016). "3.3 Convex Hulls". Geometry of convex sets. Hoboken, New Jersey: Wiley Blackwell. ISBN 978-1-119-02266-4. 
  6. Eggleston, H. G. (1958). Convexity. Cambridge University Press. doi:10.1017/cbo9780511566172. ISBN 9780511566172. http://ebooks.cambridge.org/ref/id/CBO9780511566172.  See pages 40–41.
  7. Naszódi, Márton; Polyanskii, Alexandr (2021). "Perron and Frobenius Meet Carathéodory". The Electronic Journal of Combinatorics 28 (3). doi:10.37236/9996. 
  8. Bárány, Imre; Karasev, Roman (2012-07-20). "Notes About the Carathéodory Number" (in en). Discrete & Computational Geometry 48 (3): 783–792. doi:10.1007/s00454-012-9439-z. ISSN 0179-5376. 
  9. Adiprasito, Karim; Bárány, Imre; Mustafa, Nabil H.; Terpai, Tamás (2019-08-28). "Theorems of Carathéodory, Helly, and Tverberg without dimension". arXiv:1806.08725 [math.MG].
  10. 10.0 10.1 10.2 Bárány, Imre (1982-01-01). "A generalization of carathéodory's theorem" (in en). Discrete Mathematics 40 (2–3): 141–152. doi:10.1016/0012-365X(82)90115-7. ISSN 0012-365X. 
  11. Montejano, Luis; Fabila, Ruy; Bracho, Javier; Bárány, Imre; Arocha, Jorge L. (2009-09-01). "Very Colorful Theorems" (in en). Discrete & Computational Geometry 42 (2): 142–154. doi:10.1007/s00454-009-9180-4. ISSN 1432-0444. 
  12. 12.0 12.1 Mustafa, Nabil H.; Ray, Saurabh (2016-04-06). "An optimal generalization of the Colorful Carathéodory theorem" (in en). Discrete Mathematics 339 (4): 1300–1305. doi:10.1016/j.disc.2015.11.019. ISSN 0012-365X. 
  13. Meunier, Frédéric; Mulzer, Wolfgang; Sarrabezolles, Pauline; Stein, Yannik (2017-01-01), "The Rainbow at the End of the Line ? A PPAD Formulation of the Colorful Carathéodory Theorem with Applications", Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings (Society for Industrial and Applied Mathematics): pp. 1342–1351, doi:10.1137/1.9781611974782.87, ISBN 978-1-61197-478-2 

Further reading

  • Eckhoff, J. (1993). "Helly, Radon, and Carathéodory type theorems". Handbook of Convex Geometry. A, B. Amsterdam: North-Holland. pp. 389–448. 
  • Mustafa, Nabil; Meunier, Frédéric; Goaoc, Xavier; De Loera, Jesús (2019). "The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg" (in en). Bulletin of the American Mathematical Society 56 (3): 415–511. doi:10.1090/bull/1653. ISSN 0273-0979. 

External links