Leray–Schauder degree

From HandWiki

In mathematics, the Leray–Schauder degree is an extension of the degree of a base point preserving continuous map between spheres [math]\displaystyle{ (S^n, *) \to (S^n , *) }[/math] or equivalently to a boundary sphere preserving continuous maps between balls [math]\displaystyle{ (B^n, S^{n-1}) \to (B^n, S^{n-1}) }[/math] to boundary sphere preserving maps between balls in a Banach space [math]\displaystyle{ f: (B(V), S(V)) \to (B(V), S(V)) }[/math], assuming that the map is of the form [math]\displaystyle{ f = id - C }[/math] where [math]\displaystyle{ id }[/math] is the identity map and [math]\displaystyle{ C }[/math] is some compact map (i.e. mapping bounded sets to sets whose closure is compact).[1] The degree was invented by Jean Leray and Juliusz Schauder to prove existence results for partial differential equations.[2][3]

References

  1. Leray, Jean; Schauder, Jules (1934). "Topologie et équations fonctionnelles". Annales scientifiques de l'École normale supérieure 51: 45–78. doi:10.24033/asens.836. ISSN 0012-9593. http://www.numdam.org/item?id=ASENS_1934_3_51__45_0. 
  2. Mawhin, Jean (1999). "Leray-Schauder degree: a half century of extensions and applications". Topological Methods in Nonlinear Analysis 14: 195–228. https://projecteuclid.org/journals/topological-methods-in-nonlinear-analysis/volume-14/issue-2/Leray-Schauder-degree--a-half-century-of-extensions-and/tmna/1475179840.full. Retrieved 2022-04-19. 
  3. Mawhin, J. (2018). A tribute to Juliusz Schauder. Antiquitates Mathematicae, 12.