Order-3-5 heptagonal honeycomb

From HandWiki
Order-3-5 heptagonal honeycomb
Type Regular honeycomb
Schläfli symbol {7,3,5}
Coxeter diagram CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Cells {7,3} Heptagonal tiling.svg
Faces Heptagon {7}
Vertex figure icosahedron {3,5}
Dual {5,3,7}
Coxeter group [7,3,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-3-5 heptagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

Geometry

The Schläfli symbol of the order-3-5 heptagonal honeycomb is {7,3,5}, with five heptagonal tilings meeting at each edge. The vertex figure of this honeycomb is an icosahedron, {3,5}.

Hyperbolic honeycomb 7-3-5 poincare vc.png
Poincaré disk model
(vertex centered)
H3 735 UHS plane at infinity.png
Ideal surface

Related polytopes and honeycombs

It is a part of a series of regular polytopes and honeycombs with {p,3,5} Schläfli symbol, and icosahedral vertex figures.

Order-3-5 octagonal honeycomb

Order-3-5 octagonal honeycomb
Type Regular honeycomb
Schläfli symbol {8,3,5}
Coxeter diagram CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Cells {8,3} H2-8-3-dual.svg
Faces Octagon {8}
Vertex figure icosahedron {3,5}
Dual {5,3,8}
Coxeter group [8,3,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-3-5 octagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an octagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order 3-5 heptagonal honeycomb is {8,3,5}, with five octagonal tilings meeting at each edge. The vertex figure of this honeycomb is an icosahedron, {3,5}.

Hyperbolic honeycomb 8-3-5 poincare vc.png
Poincaré disk model
(vertex centered)

Order-3-5 apeirogonal honeycomb

Order-3-5 apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbol {∞,3,5}
Coxeter diagram CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Cells {∞,3} H2-I-3-dual.svg
Faces Apeirogon {∞}
Vertex figure icosahedron {3,5}
Dual {5,3,∞}
Coxeter group [∞,3,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-3-5 apeirogonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-3 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-3-5 apeirogonal honeycomb is {∞,3,5}, with five order-3 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is an icosahedron, {3,5}.

Hyperbolic honeycomb i-3-5 poincare vc.png
Poincaré disk model
(vertex centered)
H3 i35 UHS plane at infinity.png
Ideal surface

See also

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes

References

External links