P′′
Paradigm | Imperative, structured |
---|---|
Designed by | Corrado Böhm |
First appeared | 1964 |
Typing discipline | untyped |
Dialects | |
Brainfuck | |
Influenced | |
Brainfuck |
P′′ (P double prime[1]) is a primitive computer programming language created by Corrado Böhm[2][3] in 1964 to describe a family of Turing machines.
Definition
[math]\displaystyle{ \mathcal{P}^{\prime\prime} }[/math] (hereinafter written P′′) is formally defined as a set of words on the four-instruction alphabet [math]\displaystyle{ \{R, \lambda, (, )\} }[/math], as follows:
Syntax
- [math]\displaystyle{ R }[/math] and [math]\displaystyle{ \lambda }[/math] are words in P′′.
- If [math]\displaystyle{ q_1 }[/math] and [math]\displaystyle{ q_2 }[/math] are words in P′′, then [math]\displaystyle{ q_1 q_2 }[/math] is a word in P′′.
- If [math]\displaystyle{ q }[/math] is a word in P′′, then [math]\displaystyle{ (q) }[/math] is a word in P′′.
- Only words derivable from the previous three rules are words in P′′.
Semantics
- [math]\displaystyle{ \{\Box, c_1, c_2, \ldots, c_n\} }[/math] is the tape-alphabet of a Turing machine with left-infinite tape, [math]\displaystyle{ \Box }[/math] being the blank symbol, equivalent to [math]\displaystyle{ c_0 }[/math].
- All instructions in P′′ are permutations of the set [math]\displaystyle{ X }[/math] of all possible tape configurations; that is, all possible configurations of both the contents of the tape and the position of the tape-head.
- [math]\displaystyle{ \alpha }[/math] is a predicate saying that the current symbol is not [math]\displaystyle{ \Box }[/math]. It is not an instruction and is not used in programs, but is instead used to help define the language.
- [math]\displaystyle{ R }[/math] means move the tape-head rightward one cell (if possible).
- [math]\displaystyle{ \lambda }[/math] means replace the current symbol [math]\displaystyle{ c_i }[/math] with [math]\displaystyle{ c_{(i+1) \bmod (n+1)} }[/math], and then move the tape-head leftward one cell.
- [math]\displaystyle{ q_1 q_2 }[/math] means the function composition [math]\displaystyle{ q_2 \circ q_1 }[/math]. In other words, the instruction [math]\displaystyle{ q_1 }[/math] is performed before [math]\displaystyle{ q_2 }[/math].
- [math]\displaystyle{ (q) }[/math] means iterate [math]\displaystyle{ q }[/math] in a while loop, with the condition [math]\displaystyle{ \alpha }[/math].
Relation to other programming languages
- P′′ was the first "GOTO-less" imperative structured programming language to be proven Turing-complete[2][3]
- The Brainfuck language (apart from its I/O commands) is a minor informal variation of P′′. Böhm gives explicit P′′ programs for each of a set of basic functions sufficient to compute any computable function, using only [math]\displaystyle{ ( }[/math], [math]\displaystyle{ ) }[/math] and the four words [math]\displaystyle{ r, r^\prime, L, R }[/math] where [math]\displaystyle{ r \equiv \lambda R, r^\prime \equiv r^n }[/math] with [math]\displaystyle{ r^n }[/math] denoting the [math]\displaystyle{ n }[/math]th iterate of [math]\displaystyle{ r }[/math], and [math]\displaystyle{ L \equiv r^\prime \lambda }[/math]. These are the equivalents of the six respective Brainfuck commands [, ], +, -, <, >. Note that since [math]\displaystyle{ c_{n+1} \equiv c_0 \equiv \Box }[/math], incrementing the current symbol [math]\displaystyle{ n }[/math] times will wrap around so that the result is to "decrement" the symbol in the current cell by one ([math]\displaystyle{ r^\prime }[/math]).
Example program
Böhm[2] gives the following program to compute the predecessor (x-1) of an integer x > 0:
- [math]\displaystyle{ R(R)L(r^\prime(L(L))r^\prime L)Rr }[/math]
which translates directly to the equivalent Brainfuck program:
>[>]<[−[<[<]]−<]>+
The program expects an integer to be represented in bijective base-k notation, with [math]\displaystyle{ c_1, c_2 \ldots, c_k }[/math] encoding the digits [math]\displaystyle{ 1, 2, \ldots, k }[/math] respectively, and to have [math]\displaystyle{ \Box }[/math] before and after the digit-string. (E.g., in bijective base-2, the number eight would be encoded as [math]\displaystyle{ \Box c_1 c_1 c_2 \Box }[/math], because 8 in bijective base-2 is 112.) At the beginning and end of the computation, the tape-head is on the [math]\displaystyle{ \Box }[/math] preceding the digit-string.
References
- ↑ "PDBL: A tool for Turing machine simulation". 4 September 2021. https://github.com/Pbtflakes/pdbl.
- ↑ 2.0 2.1 2.2 Böhm, C.: "On a family of Turing machines and the related programming language", ICC Bull. 3, 185-194, July 1964.
- ↑ 3.0 3.1 Böhm, C. and Jacopini, G.: "Flow diagrams, Turing machines and languages with only two formation rules", CACM 9(5), 1966. (Note: This is the most-cited paper on the structured program theorem.)
External links
- P′′Online interpreter: Demonstrating the iterative 99 Bottles of Beer song construed in 337568 P′′ instructions.
Original source: https://en.wikipedia.org/wiki/P′′.
Read more |