Ringel–Hall algebra

From HandWiki

In mathematics, a Ringel–Hall algebra is a generalization of the Hall algebra, studied by Claus Michael Ringel (1990). It has a basis of equivalence classes of objects of an abelian category, and the structure constants for this basis are related to the numbers of extensions of objects in the category.

References

  • Lusztig, George (1991), "Quivers, perverse sheaves, and quantized enveloping algebras", Journal of the American Mathematical Society 4 (2): 365–421, doi:10.1090/S0894-0347-1991-1088333-2 
  • Ringel, Claus Michael (1990), "Hall algebras and quantum groups", Inventiones Mathematicae 101 (3): 583–591, doi:10.1007/BF01231516, Bibcode1990InMat.101..583R, https://pub.uni-bielefeld.de/record/1782088 
  • Schiffmann, Olivier (2006). "Lectures on Hall algebras". arXiv:math/0611617.

External links