Selberg integral

From HandWiki
Short description: Mathematical function

In mathematics, the Selberg integral is a generalization of Euler beta function to n dimensions introduced by Atle Selberg.[1] It has applications in statistical mechanics, multivariable orthogonal polynomials, random matrix theory, Calogero–Moser–Sutherland model, and Knizhnik–Zamolodchikov equations.[2]

Selberg's integral formula

When Re(α)>0,Re(β)>0,Re(γ)>min(1n,Re(α)n1,Re(β)n1), we have

Sn(α,β,γ)=0101i=1ntiα1(1ti)β11i<jn|titj|2γdt1dtn=j=0n1Γ(α+jγ)Γ(β+jγ)Γ(1+(j+1)γ)Γ(α+β+(n+j1)γ)Γ(1+γ)

Selberg's formula implies Dixon's identity for well poised hypergeometric series, and some special cases of Dyson's conjecture. This is a corollary of Aomoto.

Aomoto's integral formula

Aomoto proved a slightly more general integral formula.[3] With the same conditions as Selberg's formula,

0101(i=1kti)i=1ntiα1(1ti)β11i<jn|titj|2γdt1dtn
=Sn(α,β,γ)j=1kα+(nj)γα+β+(2nj1)γ.

A proof is found in Chapter 8 of (Andrews Askey).[4]

Mehta's integral

When Re(γ)>1/n,

1(2π)n/2i=1neti2/21i<jn|titj|2γdt1dtn=j=1nΓ(1+jγ)Γ(1+γ).

It is a corollary of Selberg, by setting α=β, and change of variables with ti=1+t'i/2α2, then taking α.

This was conjectured by (Mehta Dyson), who were unaware of Selberg's earlier work.[5]

It is the partition function for a gas of point charges moving on a line that are attracted to the origin.[6]

In particular, when γ=1, the term on the right is j=1nj!.

Macdonald's integral

(Macdonald 1982) conjectured the following extension of Mehta's integral to all finite root systems, Mehta's original case corresponding to the An−1 root system.[7]

1(2π)n/2|r2(x,r)(r,r)|γe(x12++xn2)/2dx1dxn=j=1nΓ(1+djγ)Γ(1+γ)

The product is over the roots r of the roots system and the numbers dj are the degrees of the generators of the ring of invariants of the reflection group. (Opdam 1989) gave a uniform proof for all crystallographic reflection groups.[8] Several years later he proved it in full generality, making use of computer-aided calculations by Garvan.[9]

References

  1. Selberg, Atle (1944). "Remarks on a multiple integral". Norsk Mat. Tidsskr. 26: 71–78. https://cds.cern.ch/record/411367. 
  2. Forrester, Peter J.; Warnaar, S. Ole (2008). "The importance of the Selberg integral". Bull. Amer. Math. Soc. 45 (4): 489–534. doi:10.1090/S0273-0979-08-01221-4. 
  3. Aomoto, K (1987). "On the complex Selberg integral". The Quarterly Journal of Mathematics 38 (4): 385–399. doi:10.1093/qmath/38.4.385. https://academic.oup.com/qjmath/article-abstract/38/4/385/1530985. 
  4. Andrews, George; Askey, Richard; Roy, Ranjan (1999). "The Selberg integral and its applications". Special functions. Encyclopedia of Mathematics and its Applications. 71. Cambridge University Press. ISBN 978-0-521-62321-6. 
  5. Mehta, Madan Lal; Dyson, Freeman J. (1963). "Statistical theory of the energy levels of complex systems. V". Journal of Mathematical Physics 4 (5): 713–719. doi:10.1063/1.1704009. Bibcode1963JMP.....4..713M. https://pubs.aip.org/aip/jmp/article-abstract/4/5/713/230167/Statistical-Theory-of-the-Energy-Levels-of-Complex. 
  6. Mehta, Madan Lal (2004). Random matrices. Pure and Applied Mathematics (Amsterdam). 142 (3rd ed.). Elsevier/Academic Press, Amsterdam. ISBN 978-0-12-088409-4. 
  7. Macdonald, I. G. (1982). "Some conjectures for root systems". SIAM Journal on Mathematical Analysis 13 (6): 988–1007. doi:10.1137/0513070. ISSN 0036-1410. 
  8. Opdam, E.M. (1989). "Some applications of hypergeometric shift operators". Invent. Math. 98 (1): 275–282. doi:10.1007/BF01388841. Bibcode1989InMat..98....1O. http://dare.uva.nl/personal/pure/en/publications/some-applications-of-hypergeometric-shift-operators(4d1bc98d-e707-47eb-aaec-164e5488d0bc).html. 
  9. Opdam, E.M. (1993). "Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group". Compositio Mathematica 85 (3): 333–373. http://www.numdam.org/item?id=CM_1993__85_3_333_0. 

Further reading

  • Forrester, Peter (2010). "4. The Selberg integral". Log-gases and random matrices. London Mathematical Society monographs. Princeton: Princeton University Press. ISBN 978-0-691-12829-0. 

Template:Random matrix theory