Sierpiński's constant

From HandWiki

Sierpiński's constant is a mathematical constant usually denoted as K. One way of defining it is as the following limit:

[math]\displaystyle{ K=\lim_{n \to \infty}\left[\sum_{k=1}^{n}{r_2(k)\over k} - \pi\ln n\right] }[/math]

where r2(k) is a number of representations of k as a sum of the form a2 + b2 for integer a and b.

It can be given in closed form as:

[math]\displaystyle{ \begin{align} K &= \pi \left(2 \ln 2+3 \ln \pi + 2 \gamma - 4 \ln \Gamma \left(\tfrac{1}{4}\right)\right)\\ &=\pi \ln\left(\frac{4\pi^3 e^{2\gamma}}{\Gamma \left(\tfrac{1}{4}\right)^4}\right)\\ &=\pi \ln\left(\frac{e^{2\gamma}}{2G^2}\right)\\ &= 2.58498 17595 79253 21706 58935 87383\dots \end{align} }[/math]

where [math]\displaystyle{ G }[/math] is Gauss's constant and [math]\displaystyle{ \gamma }[/math] is the Euler-Mascheroni constant.

Another way to define/understand Sierpiński's constant is,

Error creating thumbnail: convert: corrupt image `/var/www/html/handwiki/public_html/wiki/images/b/b5/Sierpinski_constant.gif' @ error/gif.c/DecodeImage/513. convert: corrupt image `/var/www/html/handwiki/public_html/wiki/images/b/b5/Sierpinski_constant.gif' @ error/gif.c/ReadGIFImage/1389. convert: no images defined `/tmp/transform_3299184558d7.gif' @ error/convert.c/ConvertImageCommand/3229. Error code: 1
Graph of the given equation where the straight line represents Sierpiński's constant.

Let r(n)[1] denote the number of representations of [math]\displaystyle{ n }[/math] by [math]\displaystyle{ k }[/math] squares, then the Summatory Function[2] of [math]\displaystyle{ r_2(k)/k }[/math] has the Asymptotic[3] expansion

[math]\displaystyle{ \sum_{k=1}^{n}{r_2(k)\over k}=K+\pi\ln n+o\surd(1/n) }[/math],

where [math]\displaystyle{ K=2.5849817596 }[/math] is the Sierpinski constant. The above plot shows

[math]\displaystyle{ [\sum_{k=1}^{n}{r_2(k)\over k}]-\pi\ln n }[/math],

with the value of [math]\displaystyle{ K }[/math] indicated as the solid horizontal line.

See also

External links

References