Szemerédi's theorem

From HandWiki
Short description: Long dense subsets of the integers contain arbitrarily large arithmetic progressions

In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured[1] that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.

Statement

A subset A of the natural numbers is said to have positive upper density if

lim supn|A{1,2,3,,n}|n>0.

Szemerédi's theorem asserts that a subset of the natural numbers with positive upper density contains infinitely many arithmetic progressions of length k for all positive integers k.

An often-used equivalent finitary version of the theorem states that for every positive integer k and real number δ(0,1], there exists a positive integer

N=N(k,δ)

such that every subset of {1, 2, ..., N} of size at least δN contains an arithmetic progression of length k.

Another formulation uses the function rk(N), the size of the largest subset of {1, 2, ..., N} without an arithmetic progression of length k. Szemerédi's theorem is equivalent to the asymptotic bound

rk(N)=o(N).

That is, rk(N) grows less than linearly with N.

History

Van der Waerden's theorem, a precursor of Szemerédi's theorem, was proven in 1927.

The cases k = 1 and k = 2 of Szemerédi's theorem are trivial. The case k = 3, known as Roth's theorem, was established in 1953 by Klaus Roth[2] via an adaptation of the Hardy–Littlewood circle method. Endre Szemerédi[3] proved the case k = 4 through combinatorics. Using an approach similar to the one he used for the case k = 3, Roth[4] gave a second proof for this in 1972.

The general case was settled in 1975, also by Szemerédi,[5] who developed an ingenious and complicated extension of his previous combinatorial argument for k = 4 (called "a masterpiece of combinatorial reasoning" by Erdős[6]). Several other proofs are now known, the most important being those by Hillel Furstenberg[7][8] in 1977, using ergodic theory, and by Timothy Gowers[9] in 2001, using both Fourier analysis and combinatorics. Terence Tao has called the various proofs of Szemerédi's theorem a "Rosetta stone" for connecting disparate fields of mathematics.[10]

Quantitative bounds

It is an open problem to determine the exact growth rate of rk(N). The best known general bounds are

CNexp(n2(n1)/2logNn+12nloglogN)rk(N)N(loglogN)22k+9,

where n=logk. The lower bound is due to O'Bryant[11] building on the work of Behrend,[12] Rankin,[13] and Elkin.[14][15] The upper bound is due to Gowers.[9]

For small k, there are tighter bounds than the general case. When k = 3, Bourgain,[16][17] Heath-Brown,[18] Szemerédi,[19] Sanders,[20] and Bloom[21] established progressively smaller upper bounds, and Bloom and Sisask then proved the first bound that broke the so-called ``logarithmic barrier".[22] The current best bounds are

N28logNr3(N)Nec(logN)1/11, for some constant c>0,

due to O'Bryant,[11] and Kelley and Meka[23] respectively.

For k = 4, Green and Tao[24][25] proved that

r4(N)CN(logN)c

for some c > 0.

Extensions and generalizations

A multidimensional generalization of Szemerédi's theorem was first proven by Hillel Furstenberg and Yitzhak Katznelson using ergodic theory.[26] Timothy Gowers,[27] Vojtěch Rödl and Jozef Skokan[28][29] with Brendan Nagle, Rödl, and Mathias Schacht,[30] and Terence Tao[31] provided combinatorial proofs.

Alexander Leibman and Vitaly Bergelson[32] generalized Szemerédi's to polynomial progressions: If A is a set with positive upper density and p1(n),p2(n),,pk(n) are integer-valued polynomials such that pi(0)=0, then there are infinitely many u,n such that u+pi(n)A for all 1ik. Leibman and Bergelson's result also holds in a multidimensional setting.

The finitary version of Szemerédi's theorem can be generalized to finite additive groups including vector spaces over finite fields.[33] The finite field analog can be used as a model for understanding the theorem in the natural numbers.[34] The problem of obtaining bounds in the k=3 case of Szemerédi's theorem in the vector space 𝔽3n is known as the cap set problem.

The Green–Tao theorem asserts the prime numbers contain arbitrary long arithmetic progressions. It is not implied by Szemerédi's theorem because the primes have density 0 in the natural numbers. As part of their proof, Ben Green and Tao introduced a "relative" Szemerédi theorem which applies to subsets of the integers (even those with 0 density) satisfying certain pseudorandomness conditions. A more general relative Szemerédi theorem has since been given by David Conlon, Jacob Fox, and Yufei Zhao.[35][36]

The Erdős conjecture on arithmetic progressions would imply both Szemerédi's theorem and the Green–Tao theorem.

See also

Notes

  1. Erdős, Paul; Turán, Paul (1936). "On some sequences of integers". Journal of the London Mathematical Society 11 (4): 261–264. doi:10.1112/jlms/s1-11.4.261. http://www.renyi.hu/~p_erdos/1936-05.pdf. 
  2. Roth, Klaus Friedrich (1953). "On certain sets of integers". Journal of the London Mathematical Society 28 (1): 104–109. doi:10.1112/jlms/s1-28.1.104. 
  3. Szemerédi, Endre (1969). "On sets of integers containing no four elements in arithmetic progression". Acta Mathematica Academiae Scientiarum Hungaricae 20 (1–2): 89–104. doi:10.1007/BF01894569. 
  4. Roth, Klaus Friedrich (1972). "Irregularities of sequences relative to arithmetic progressions, IV". Periodica Math. Hungar. 2 (1–4): 301–326. doi:10.1007/BF02018670. 
  5. Szemerédi, Endre (1975). "On sets of integers containing no k elements in arithmetic progression". Acta Arithmetica 27: 199–245. doi:10.4064/aa-27-1-199-245. http://matwbn.icm.edu.pl/ksiazki/aa/aa27/aa27132.pdf. 
  6. Erdős, Paul (2013). Graham, Ronald L.; Nešetřil, Jaroslav; Butler, Steve. eds. The Mathematics of Paul Erdős I (Second ed.). New York: Springer. pp. 51–70. doi:10.1007/978-1-4614-7258-2_3. ISBN 978-1-4614-7257-5. 
  7. Furstenberg, Hillel (1977). "Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions". Journal d'Analyse Mathématique 31: 204–256. doi:10.1007/BF02813304. .
  8. Furstenberg, Hillel; Katznelson, Yitzhak; Ornstein, Donald Samuel (1982). "The ergodic theoretical proof of Szemerédi's theorem". Bull. Amer. Math. Soc. 7 (3): 527–552. doi:10.1090/S0273-0979-1982-15052-2. 
  9. 9.0 9.1 Gowers, Timothy (2001). "A new proof of Szemerédi's theorem". Geom. Funct. Anal. 11 (3): 465–588. doi:10.1007/s00039-001-0332-9. http://www.dpmms.cam.ac.uk/~wtg10/sz898.dvi. 
  10. Tao, Terence (2007). "Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006". in Sanz-Solé, Marta; Soria, Javier; Varona, Juan Luis et al.. International Congress of Mathematicians. 1. Zürich: European Mathematical Society. pp. 581–608. doi:10.4171/022-1/22. ISBN 978-3-03719-022-7. 
  11. 11.0 11.1 O'Bryant, Kevin (2011). "Sets of integers that do not contain long arithmetic progressions". Electronic Journal of Combinatorics 18 (1). doi:10.37236/546. http://www.combinatorics.org/ojs/index.php/eljc/article/download/v18i1p59/pdf. 
  12. Behrend, Felix A. (1946). "On the sets of integers which contain no three terms in arithmetic progression". Proceedings of the National Academy of Sciences 32 (12): 331–332. doi:10.1073/pnas.32.12.331. PMID 16578230. Bibcode1946PNAS...32..331B. 
  13. Rankin, Robert A. (1962). "Sets of integers containing not more than a given number of terms in arithmetical progression". Proc. R. Soc. Edinburgh Sect. A 65: 332–344. 
  14. Elkin, Michael (2011). "An improved construction of progression-free sets". Israel Journal of Mathematics 184 (1): 93–128. doi:10.1007/s11856-011-0061-1. 
  15. Green, Ben; Wolf, Julia (2010). "Additive Number Theory". in Chudnovsky, David; Chudnovsky, Gregory. Additive number theory. Festschrift in honor of the sixtieth birthday of Melvyn B. Nathanson. New York: Springer. pp. 141–144. doi:10.1007/978-0-387-68361-4_9. ISBN 978-0-387-37029-3. 
  16. Bourgain, Jean (1999). "On triples in arithmetic progression". Geom. Funct. Anal. 9 (5): 968–984. doi:10.1007/s000390050105. 
  17. Bourgain, Jean (2008). "Roth's theorem on progressions revisited". Journal d'Analyse Mathématique 104 (1): 155–192. doi:10.1007/s11854-008-0020-x. 
  18. Heath-Brown, Roger (1987). "Integer sets containing no arithmetic progressions". Journal of the London Mathematical Society 35 (3): 385–394. doi:10.1112/jlms/s2-35.3.385. 
  19. Szemerédi, Endre (1990). "Integer sets containing no arithmetic progressions". Acta Mathematica Hungarica 56 (1–2): 155–158. doi:10.1007/BF01903717. 
  20. Sanders, Tom (2011). "On Roth's theorem on progressions". Annals of Mathematics 174 (1): 619–636. doi:10.4007/annals.2011.174.1.20. 
  21. Bloom, Thomas F. (2016). "A quantitative improvement for Roth's theorem on arithmetic progressions". Journal of the London Mathematical Society. Second Series 93 (3): 643–663. doi:10.1112/jlms/jdw010. 
  22. Bloom, Thomas; Sisask, Olof (2020). Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions. 
  23. Kelley, Zander; Meka, Raghu (2023). Strong bounds for 3-progressions. 
  24. Green, Ben; Tao, Terence (2009). "New bounds for Szemeredi's theorem, II: A new bound for r_4(N)". in Chen, William W. L.; Gowers, Timothy; Halberstam, Heini et al.. Analytic number theory. Essays in honour of Klaus Roth on the occasion of his 80th birthday. Cambridge: Cambridge University Press. pp. 180–204. ISBN 978-0-521-51538-2. Bibcode2006math.....10604G. 
  25. Green, Ben; Tao, Terence (2017). "New bounds for Szemerédi's theorem, III: A polylogarithmic bound for r4(N)". Mathematika 63 (3): 944–1040. doi:10.1112/S0025579317000316. 
  26. Furstenberg, Hillel; Katznelson, Yitzhak (1978). "An ergodic Szemerédi theorem for commuting transformations". Journal d'Analyse Mathématique 38 (1): 275–291. doi:10.1007/BF02790016. 
  27. Gowers, Timothy (2007). "Hypergraph regularity and the multidimensional Szemerédi theorem". Annals of Mathematics 166 (3): 897–946. doi:10.4007/annals.2007.166.897. 
  28. Rödl, Vojtěch; Skokan, Jozef (2004). "Regularity lemma for k-uniform hypergraphs". Random Structures Algorithms 25 (1): 1–42. doi:10.1002/rsa.20017. 
  29. Rödl, Vojtěch; Skokan, Jozef (2006). "Applications of the regularity lemma for uniform hypergraphs". Random Structures Algorithms 28 (2): 180–194. doi:10.1002/rsa.20108. http://www.math.emory.edu/technical-reports/techrep-00076.pdf. 
  30. Nagle, Brendan; Rödl, Vojtěch; Schacht, Mathias (2006). "The counting lemma for regular k-uniform hypergraphs". Random Structures Algorithms 28 (2): 113–179. doi:10.1002/rsa.20117. 
  31. Tao, Terence (2006). "A variant of the hypergraph removal lemma". Journal of Combinatorial Theory. Series A 113 (7): 1257–1280. doi:10.1016/j.jcta.2005.11.006. 
  32. Bergelson, Vitaly; Leibman, Alexander (1996). "Polynomial extensions of van der Waerden's and Szemerédi's theorems". Journal of the American Mathematical Society 9 (3): 725–753. doi:10.1090/S0894-0347-96-00194-4. 
  33. Furstenberg, Hillel; Katznelson, Yitzhak (1991). "A density version of the Hales–Jewett theorem". Journal d'Analyse Mathématique 57 (1): 64–119. doi:10.1007/BF03041066. 
  34. Wolf, Julia (2015). "Finite field models in arithmetic combinatorics—ten years on". Finite Fields and Their Applications 32: 233–274. doi:10.1016/j.ffa.2014.11.003. 
  35. Conlon, David; Fox, Jacob; Zhao, Yufei (2015). "A relative Szemerédi theorem". Geometric and Functional Analysis 25 (3): 733–762. doi:10.1007/s00039-015-0324-9. 
  36. Zhao, Yufei (2014). "An arithmetic transference proof of a relative Szemerédi theorem". Mathematical Proceedings of the Cambridge Philosophical Society 156 (2): 255–261. doi:10.1017/S0305004113000662. Bibcode2014MPCPS.156..255Z. 

Further reading

  • Tao, Terence (2007). Granville, Andrew; Nathanson, Melvyn B.; Solymosi, József. eds. Additive Combinatorics. CRM Proceedings & Lecture Notes. 43. Providence, RI: American Mathematical Society. pp. 145–193. ISBN 978-0-8218-4351-2. Bibcode2006math......4456T.