Szász–Mirakjan–Kantorovich operator
From HandWiki
In functional analysis, a discipline within mathematics, the Szász–Mirakjan–Kantorovich operators are defined by
- [math]\displaystyle{ [\mathcal{T}_n(f)](x)=ne^{-nx}\sum_{k=0}^\infty{\frac{(nx)^k}{k!}\int_{k/n}^{(k+1)/n}f(t)\,dt} }[/math]
where [math]\displaystyle{ x\in[0,\infty)\subset\mathbb{R} }[/math] and [math]\displaystyle{ n\in\mathbb{N} }[/math].[1]
See also
Notes
- ↑ Walczak, Zbigniew (2002). "On approximation by modified Szasz–Mirakyan operators". Glasnik Matematički 37 (57): 303–319. http://web.math.hr/glasnik/vol_37/no2_08.html.
References
- Totik, V. (June 1983). "Approximation by Szász–Mirakjan–-Kantorovich operators in Lp (p > 1)" (in ru). Analysis Mathematica 9 (2): 147–167. doi:10.1007/BF01982010.
Original source: https://en.wikipedia.org/wiki/Szász–Mirakjan–Kantorovich operator.
Read more |