Information for "Fermat quotient"

From HandWiki

Basic information

Display titleFermat quotient
Default sort keyFermat quotient
Page length (in bytes)10,228
Namespace ID0
Page ID210042
Page content languageen - English
Page content modelwikitext
Indexing by robotsAllowed
Number of redirects to this page0
Counted as a content pageYes
HandWiki item IDNone

Page protection

EditAllow all users (infinite)
MoveAllow all users (infinite)
View the protection log for this page.

Edit history

Page creatorimported>Rtextdoc
Date of page creation20:50, 8 May 2022
Latest editorimported>Rtextdoc
Date of latest edit20:50, 8 May 2022
Total number of edits1
Recent number of edits (within past 90 days)0
Recent number of distinct authors0

Page properties

Transcluded templates (28)

Templates used on this page:

SEO properties

Description

Content

Article description: (description)
This attribute controls the content of the description and og:description elements.
In number theory, the Fermat quotient of an integer a with respect to an odd prime p is defined as $ q_{p}(a)={\frac {a^{p-1}-1}{p}}, $ or $ \delta _{p}(a)={\frac {a-a^{p}}{p}} $. This article is about the former; for the latter see p-derivation. The quotient is named after Pierre de Fermat. If the...
Information from Extension:WikiSEO