Equivariant L-function: Difference between revisions

From HandWiki
imported>Smart bot editor
(fixing)
 
(No difference)

Latest revision as of 08:09, 10 May 2022

In algebraic number theory, an equivariant Artin L-function is a function associated to a finite Galois extension of global fields created by packaging together the various Artin L-functions associated with the extension. Each extension has many traditional Artin L-functions associated with it, corresponding to the characters of representations of the Galois group. By contrast, each extension has a unique corresponding equivariant L-function. Equivariant L-functions have become increasingly important as a wide range of conjectures and theorems in number theory have been developed around them. Among these are the Brumer–Stark conjecture, the Coates-Sinnott conjecture, and a recently developed equivariant version of the main conjecture in Iwasawa theory.

References