Uniquely inversible grammar
From HandWiki
Revision as of 11:00, 26 November 2021 by imported>AnLinks (change)
A uniquely inversible grammar is a formal grammar where no two distinct productions give the same result. This implies the specific production can be inferred from its results.
Formal definition
[math]\displaystyle{ A \to \alpha \land B \to \beta \iff (A \lt \gt B \Rightarrow \alpha \lt \gt \beta) }[/math]
Examples
- Uniquely inversibles
[math]\displaystyle{ A \to aA | bB }[/math]
[math]\displaystyle{ B \to b | a }[/math]
- Not uniquely inversibles[citation needed]
[math]\displaystyle{ A \to aA | bB }[/math]
[math]\displaystyle{ B \to bB | a }[/math]