Finance:Credit scorecards

From HandWiki
Revision as of 18:21, 27 December 2020 by imported>AnLinks (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Credit scorecards are mathematical models which attempt to provide a quantitative estimate of the probability that a customer will display a defined behavior (e.g. loan default, bankruptcy or a lower level of delinquency) with respect to their current or proposed credit position with a lender. Scorecards are built and optimized to evaluate the credit file of a homogeneous population (e.g. files with delinquencies, files that are very young, files that have very little information). Most empirically derived credit scoring systems have between 10 and 20 variables.[1] Application scores tend to be dominated by credit bureau data which typically amounts to over 80% of the predictive power from closer to 60% in the late 1980s[2] for UK scorecards. Indeed there has been an increasing trend to minimize applicant or non-verifiable variables from scorecards which has increased the contribution of the credit bureau data. Credit scoring typically uses observations or data from clients who defaulted on their loans plus observations on a large number of clients who have not defaulted. Statistically, estimation techniques such as logistic regression or probit are used to create estimates of the probability of default for observations based on this historical data. This model can be used to predict probability of default for new clients using the same observation characteristics (e.g. age, income, house owner). The default probabilities are then scaled to a "credit score." This score ranks clients by riskiness without explicitly identifying their probability of default.

There are a number of credit scoring techniques such as: hazard rate modeling, reduced form credit models, weight of evidence models, linear or logistic regression. The primary differences involve the assumptions required about the explanatory variables and the ability to model continuous versus binary outcomes. Some of these techniques are superior to others in directly estimating the probability of default. Despite much research from academics and industry, no single technique has been proven superior for predicting default in all circumstances.

One of the most typical mistaken belief about credit rating is that the only trait that matters is your credit rating– whether you have actually made payments on time as well as satisfied your monetary obligations in a prompt way. Sure your payment background is essential, however it still just composes just over one-third of your credit rating score. Furthermore, your repayment background is only shown in your credit history[3]

See also

References

  1. Murray Bailey "Practical Credit Scoring: Issues and Techniques" White Box Publishing (2006)
  2. Murray Bailey "Practical Credit Scoring: Issues and Techniques" White Box Publishing (2006)
  3. "Credit Debt Elimination". http://creditdebtelimination.com/. 
  4. "Your credit rating explained". BBC News. 11 January 2008. http://news.bbc.co.uk/2/hi/business/2963580.stm. Retrieved 15 December 2012.