Prime zeta function

From HandWiki
Revision as of 15:39, 24 October 2022 by Rtextdoc (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, the prime zeta function is an analogue of the Riemann zeta function, studied by (Glaisher 1891). It is defined as the following infinite series, which converges for [math]\displaystyle{ \Re(s) \gt 1 }[/math]:

[math]\displaystyle{ P(s)=\sum_{p\,\in\mathrm{\,primes}} \frac{1}{p^s}=\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{5^s}+\frac{1}{7^s}+\frac{1}{11^s}+\cdots. }[/math]

Properties

The Euler product for the Riemann zeta function ζ(s) implies that

[math]\displaystyle{ \log\zeta(s)=\sum_{n\gt 0} \frac{P(ns)} n }[/math]

which by Möbius inversion gives

[math]\displaystyle{ P(s)=\sum_{n\gt 0} \mu(n)\frac{\log\zeta(ns)} n }[/math]

When s goes to 1, we have [math]\displaystyle{ P(s)\sim \log\zeta(s)\sim\log\left(\frac{1}{s-1} \right) }[/math]. This is used in the definition of Dirichlet density.

This gives the continuation of P(s) to [math]\displaystyle{ \Re(s) \gt 0 }[/math], with an infinite number of logarithmic singularities at points s where ns is a pole (only ns = 1 when n is a squarefree number greater than or equal to 1), or zero of the Riemann zeta function ζ(.). The line [math]\displaystyle{ \Re(s) = 0 }[/math] is a natural boundary as the singularities cluster near all points of this line.

If one defines a sequence

[math]\displaystyle{ a_n=\prod_{p^k \mid n} \frac{1}{k}=\prod_{p^k \mid \mid n} \frac 1 {k!} }[/math]

then

[math]\displaystyle{ P(s)=\log\sum_{n=1}^\infty \frac{a_n}{n^s}. }[/math]

(Exponentiation shows that this is equivalent to Lemma 2.7 by Li.)

The prime zeta function is related to Artin's constant by

[math]\displaystyle{ \ln C_{\mathrm{Artin}} = - \sum_{n=2}^{\infty} \frac{(L_n-1)P(n)}{n} }[/math]

where Ln is the nth Lucas number.[1]

Specific values are:

s approximate value P(s) OEIS
1 [math]\displaystyle{ \tfrac{1}{2} + \tfrac{1}{3} + \tfrac{1}{5} + \tfrac{1}{7} + \tfrac{1}{11} + \cdots \to \infty. }[/math][2]
2 [math]\displaystyle{ 0{.}45224\text{ }74200\text{ }41065\text{ }49850 \ldots }[/math] OEISA085548
3 [math]\displaystyle{ 0{.}17476\text{ }26392\text{ }99443\text{ }53642 \ldots }[/math] OEISA085541
4 [math]\displaystyle{ 0{.}07699\text{ }31397\text{ }64246\text{ }84494 \ldots }[/math] OEISA085964
5 [math]\displaystyle{ 0{.}03575\text{ }50174\text{ }83924\text{ }25713 \ldots }[/math] OEISA085965
9 [math]\displaystyle{ 0{.}00200\text{ }44675\text{ }74962\text{ }45066 \ldots }[/math] OEISA085969

Analysis

Integral

The integral over the prime zeta function is usually anchored at infinity, because the pole at [math]\displaystyle{ s=1 }[/math] prohibits defining a nice lower bound at some finite integer without entering a discussion on branch cuts in the complex plane:

[math]\displaystyle{ \int_s^\infty P(t) \, dt = \sum_p \frac 1 {p^s\log p} }[/math]

The noteworthy values are again those where the sums converge slowly:

s approximate value [math]\displaystyle{ \sum _p 1/(p^s\log p) }[/math] OEIS
1 [math]\displaystyle{ 1.63661632\ldots }[/math] OEISA137245
2 [math]\displaystyle{ 0.50778218\ldots }[/math] OEISA221711
3 [math]\displaystyle{ 0.22120334\ldots }[/math]
4 [math]\displaystyle{ 0.10266547\ldots }[/math]

Derivative

The first derivative is

[math]\displaystyle{ P'(s) \equiv \frac{d}{ds} P(s) = - \sum_p \frac{\log p}{p^s} }[/math]

The interesting values are again those where the sums converge slowly:

s approximate value [math]\displaystyle{ P'(s) }[/math] OEIS
2 [math]\displaystyle{ -0.493091109\ldots }[/math] OEISA136271
3 [math]\displaystyle{ -0.150757555\ldots }[/math] OEISA303493
4 [math]\displaystyle{ -0.060607633\ldots }[/math] OEISA303494
5 [math]\displaystyle{ -0.026838601\ldots }[/math] OEISA303495

Generalizations

Almost-prime zeta functions

As the Riemann zeta function is a sum of inverse powers over the integers and the prime zeta function a sum of inverse powers of the prime numbers, the k-primes (the integers which are a product of [math]\displaystyle{ k }[/math] not necessarily distinct primes) define a sort of intermediate sums:

[math]\displaystyle{ P_k(s)\equiv \sum_{n: \Omega(n)=k} \frac 1 {n^s} }[/math]

where [math]\displaystyle{ \Omega }[/math] is the total number of prime factors.

k s approximate value [math]\displaystyle{ P_k(s) }[/math] OEIS
2 2 [math]\displaystyle{ 0.14076043434\ldots }[/math] OEISA117543
2 3 [math]\displaystyle{ 0.02380603347\ldots }[/math]
3 2 [math]\displaystyle{ 0.03851619298\ldots }[/math] OEISA131653
3 3 [math]\displaystyle{ 0.00304936208\ldots }[/math]

Each integer in the denominator of the Riemann zeta function [math]\displaystyle{ \zeta }[/math] may be classified by its value of the index [math]\displaystyle{ k }[/math], which decomposes the Riemann zeta function into an infinite sum of the [math]\displaystyle{ P_k }[/math]:

[math]\displaystyle{ \zeta(s) = 1+\sum_{k=1,2,\ldots} P_k(s) }[/math]

Since we know that the Dirichlet series (in some formal parameter u) satisfies

[math]\displaystyle{ P_{\Omega}(u, s) := \sum_{n \geq 1} \frac{u^{\Omega(n)}}{n^s} = \prod_{p \in \mathbb{P}} \left(1-up^{-s}\right)^{-1}, }[/math]

we can use formulas for the symmetric polynomial variants with a generating function of the right-hand-side type. Namely, we have the coefficient-wise identity that [math]\displaystyle{ P_k(s) = [u^k] P_{\Omega}(u, s) = h(x_1, x_2, x_3, \ldots) }[/math] when the sequences correspond to [math]\displaystyle{ x_j := j^{-s} \chi_{\mathbb{P}}(j) }[/math] where [math]\displaystyle{ \chi_{\mathbb{P}} }[/math] denotes the characteristic function of the primes. Using Newton's identities, we have a general formula for these sums given by

[math]\displaystyle{ P_n(s) = \sum_{{k_1+2k_2+\cdots+nk_n=n} \atop {k_1,\ldots,k_n \geq 0}} \left[\prod_{i=1}^n \frac{P(is)^{k_i}}{k_i! \cdot i^{k_i}}\right] = -[z^n]\log\left(1 - \sum_{j \geq 1} \frac{P(js) z^j}{j}\right). }[/math]

Special cases include the following explicit expansions:

[math]\displaystyle{ \begin{align}P_1(s) & = P(s) \\ P_2(s) & = \frac{1}{2}\left(P(s)^2+P(2s)\right) \\ P_3(s) & = \frac{1}{6}\left(P(s)^3+3P(s)P(2s)+2P(3s)\right) \\ P_4(s) & = \frac{1}{24}\left(P(s)^4+6P(s)^2 P(2s)+3 P(2s)^2+8P(s)P(3s)+6P(4s)\right).\end{align} }[/math]

Prime modulo zeta functions

Constructing the sum not over all primes but only over primes which are in the same modulo class introduces further types of infinite series that are a reduction of the Dirichlet L-function.

See also

  • Divergence of the sum of the reciprocals of the primes

References

  1. Weisstein, Eric W.. "Artin's Constant". http://mathworld.wolfram.com/ArtinsConstant.html. 
  2. See divergence of the sum of the reciprocals of the primes.
  • Merrifield, C. W. (1881). "The Sums of the Series of Reciprocals of the Prime Numbers and of Their Powers". Proceedings of the Royal Society 33 (216–219): 4–10. doi:10.1098/rspl.1881.0063. 
  • Fröberg, Carl-Erik (1968). "On the prime zeta function". Nordisk Tidskr. Informationsbehandling (BIT) 8 (3): 187–202. doi:10.1007/BF01933420. 
  • Glaisher, J. W. L. (1891). "On the Sums of Inverse Powers of the Prime Numbers". Quart. J. Math. 25: 347–362. 
  • Mathar, Richard J. (2008). "Twenty digits of some integrals of the prime zeta function". arXiv:0811.4739 [math.NT].
  • Li, Ji (2008). "Prime graphs and exponential composition of species". Journal of Combinatorial Theory. Series A 115 (8): 1374–1401. doi:10.1016/j.jcta.2008.02.008. 
  • Mathar, Richard J. (2010). "Table of Dirichlet L-series and prime zeta modulo functions for small moduli". arXiv:1008.2547 [math.NT].

External links