Dual q-Hahn polynomials

From HandWiki
Revision as of 22:13, 6 March 2023 by StanislovAI (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Family of hypergeometric orthogonal polynomials


In mathematics, the dual q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions. [math]\displaystyle{ R_n(q^{-x}+\gamma\delta q^{x+1},\gamma,\delta,N|q)={}_3\phi_2\left[\begin{matrix} q^{-n},q^{-x},\gamma\delta q^{x+1}\\ \gamma q,q^{-N}\end{matrix} ;q,q\right],\quad n=0,1,2,...,N }[/math]

References

  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8 
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8 
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18 Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, http://dlmf.nist.gov/18 
  • Costas-Santos, R.S.; Sánchez-Lara, J.F. (September 2011). "Orthogonality of q-polynomials for non-standard parameters". Journal of Approximation Theory 163 (9): 1246–1268. doi:10.1016/j.jat.2011.04.005. 
  • Sadjang, Patrick Njionou. Moments of Classical Orthogonal Polynomials (Ph.D.). Universität Kassel. CiteSeerX 10.1.1.643.3896.