Hu–Washizu principle
From HandWiki
In continuum mechanics, and in particular in finite element analysis, the Hu–Washizu principle is a variational principle which says that the action
- [math]\displaystyle{ \int_{V^e} \left[ \frac{1}{2} \varepsilon^T C \varepsilon - \sigma^T \varepsilon + \sigma^T (\nabla u) - \bar{p}^T u \right] dV - \int_{S_\sigma^e} \bar{T}^T u\ dS }[/math]
is stationary, where [math]\displaystyle{ C }[/math] is the elastic stiffness tensor. The Hu–Washizu principle is used to develop mixed finite element methods.[1] The principle is named after Hu Haichang and Kyūichirō Washizu.
References
- ↑ Jihuan, He (June 1997). "Equivalent theorem of Hellinger–Reissner and Hu–Washizu variational principles". Journal of Shanghai University (Shanghai University Press) 1 (1): 36–41. doi:10.1007/s11741-997-0041-1. ISSN 1007-6417.
Further reading
- K. Washizu: Variational Methods in Elasticity & Plasticity, Pergamon Press, New York, 3rd edition (1982)
- O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu : The Finite Element Method: Its Basis and Fundamentals, Butterworth–Heinemann, (2005).
Original source: https://en.wikipedia.org/wiki/Hu–Washizu principle.
Read more |