Quasi-isomorphism

From HandWiki
Revision as of 23:13, 6 March 2023 by Pchauhan2001 (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism AB of chain complexes (respectively, cochain complexes) such that the induced morphisms

[math]\displaystyle{ H_n(A_\bullet) \to H_n(B_\bullet)\ (\text{respectively, } H^n(A^\bullet) \to H^n(B^\bullet)) }[/math]

of homology groups (respectively, of cohomology groups) are isomorphisms for all n.

In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory.

See also

References

  • Gelfand, Sergei I., Manin, Yuri I. Methods of Homological Algebra, 2nd ed. Springer, 2000.