Multiplicative distance
From HandWiki
In algebraic geometry, [math]\displaystyle{ \mu }[/math] is said to be a multiplicative distance function over a field if it satisfies[1]
- [math]\displaystyle{ \mu(AB)\gt 1.\, }[/math]
- AB is congruent to A'B' iff [math]\displaystyle{ \mu(AB)=\mu(A'B').\, }[/math]
- AB < A'B' iff [math]\displaystyle{ \mu(AB)\lt \mu(A'B').\, }[/math]
- [math]\displaystyle{ \mu(AB+CD)=\mu(AB)\mu(CD).\, }[/math]
See also
- Algebraic geometry
- Hyperbolic geometry
- Poincaré disc model
- Hilbert's arithmetic of ends
References
- ↑ Geometry: Euclid and beyond, Undergraduate Texts in Mathematics, New York: Springer-Verlag, 2000, p. 363, doi:10.1007/978-0-387-22676-7, ISBN 0-387-98650-2, https://books.google.com/books?id=EJCSL9S6la0C&pg=PA363.
Original source: https://en.wikipedia.org/wiki/Multiplicative distance.
Read more |