DMelt:Plots/2 Plots in 2D
Plots in 2D
There are several canvases to show data in 2D: jhplot.Plot, jhplot.HPlot, jhplot.HPlotJa, jhplot.SPlot, jhplot.HPlotXY and many other pads.
Plots using MatLab syntax
jhplot.Plot is a simplest canvas to show data and functions. It is less Java oriented, but more oriented towards MatLab syntax (which does not assume operation with objects and dynamical access of methods).
from jhplot import * j=Plot() j.plot([-1,2,3], [0.5, 0.2, 0.3]) j.show() j.export("a.pdf") # save as PDF file # j.export("a.eps") # save as EPS (PostScript) format # j.export("a.svg") # save as SVG file
Here we created X-Y plot and saved as PDF image. You can also use the "savefig()" method, which is equivalent to the export method.
Interactive 2D canvases
Below we discuss more complicated plot canvases which can be used to display data in 2D. Such canvases usually have the names starting with the capital "H". Typically, you can build a plot to show 2D data as this:
from jhplot * c1 = HPlot("Canvas",600,400,2,1) # canvas size 600x400, 2 plot regions c1.visible(100,200) # make it visible and position at 100 , 200 pixels on the screen c1.setAutoRange() # autorange for X c1.draw(object1) # draw object1 (H1D,F1D,P1D etc) c1.draw(object2) # draw a new object c1.export("figure.pdf") # export to PDF file
This code create a canvas with the size 600x400 (in pixels), it has 2 pads to show data. The method visible(100,200) make the canvas visible and sets its location on the screen at position 100 (in X from left conner) and 200 (from top) in pixels. If you want a default position, jut call "visible()". Then you can draw any mathematical object or data. Then you can export the image to vector format. Now you are ready to plot functions, histograms and datasets. See the jhplot.HPlot documentation. It should be noted the jhplot.HPlot canvas can be replaced by any other canvas described above.
Several plotting regions
These canvases can be used to show several pads (plot regions) with plotted objects. Specify the number of divisions in X and Y in the constructors. The navigate to a specific plot region using the method "cd()". Here is example of how to create 2x2 pads on a single canvas:
from jhplot import * c1 = HPlot("Canvas",500,400,2,2) c1.visible() c1. setRangeAll(0,10,0,10) h1 = P1D("Simple") c1.cd(1,1) h1.add(5,6); c1.draw(h1) c1.cd(1,2) h1.add(4,3); c1.draw(h1) c1.cd(2,1) h1.add(3,3); c1.draw(h1) c1.cd(2,2) h1.add(2,1); c1.draw(h1) c1.export ("example.pdf") # export to PDF
This works for jhplot.HPlot, jhplot.HPlotJa, jhplot.HPlot3D and many other pads.
Here we use the same X and Y ranges. One can use "setAutoRange()" (after each "cd()") method to set autorange for each pad. Also, try "setRange(xmin,xmax,ymin,ymax)" to set fixed ranges for each pads. it shows 4 pads with data points.
The plots are fully customizable, i.e. one can change any attribute (axis, label, ticks, ticks label).
Exporting to images
When DMelt functions, histograms, data structures are shown, one can create an image using the menu [File]-[Export]. One can also save image in a file using the method "export(file)" to a variety of vector graphics formats as well as bitmap image formats.
In the example below, we save an instance of the HPlot class to a PDF file:
c1.export('image.pdf')
we export drawings on the canvas HPlot (c1 represents its instance) into a PDF file. One can also export it into PNG, JPEG, EPS, PS etc. formats using the appropriate extension for the output file name.
As example, simply append the statement "c1.export('image.ps')" at the end of code, and your image will be saved to a PostScript file "image.ps".
Images can be generated in a background (without a pop-up frame with the canvas). For this, use the method "c1.visible(0)", where "0" means Java false.
Axis labels
Can be set using setNameX("label") and setNameY("label"). These are global methods which should be applied to the HPlot canvas. However, every plotting object have their own methods, such as "setLabelX("label")" and setLabelY("label")". If the labels are set to the object, the plot will display the object labels rather than those set using setNameX() and setNameY().
Ticks and subticks
One can redefine ticks using several methods of the jhplot.HPlot
setRange(0,10,0,10) # set range for X and Y setNumberOfTics(1) # redefine ticks setNumberOfTics(0,2) # set 2 ticks on X setNumberOfTics(1,5) # set 5 ticks on Y setSubTicNumber(0,2) # set 2 subticks on X setSubTicNumber(1,4) # set 4 subticks on Y
The simple example illustrates this:
from jhplot import * c1 = HPlot("Canvas") c1.visible() c1.setRange(0,10,0,10) c1.setNumberOfTics(0,2) c1.setNumberOfTics(1,5) c1.setSubTicNumber(0,2) c1.setSubTicNumber(1,4) h1 = P1D("Simple1") xpos=5 ypos=7 h1.add(xpos,ypos) c1.draw(h1) lab=HLabel("Point", xpos, ypos, "USER") c1.add(lab) c1.update() c1.export ("example.pdf")
We labeled a point and generated a PDF files with the figure as shown in this figure:
Showing shapes and objects
You can show data and functions together with different 2D objects. Here is a simple example that shows a histogram, a data set in X-Y and 3 ellipses:
from java.awt import Font,BasicStroke,Color from java.util import Random from jhplot import HLabel, HPlot from jhplot.shapes import * # make empty canvas in some range c1 =HPlot("Canvas",600,400) c1.setGTitle("HShape package to draw Java 2D objects") c1.setLegend(0) c1.setNameX("X") c1.setNameY("Y") c1.setRange(-4.0, 4.0, 0.0, 20.0) c1.visible(1) # show a line in the NDC system line = Line(0.1,0.9, 0.2, 0.9) line.setPosCoord("NDC") line.setColor(Color.red) line.setTransparency(0.5) c1.add(line) #show a line in the NDC system line = Line(0.1,0.85, 0.2, 0.85); line.setDashed(3.0); line.setPosCoord("NDC"); line.setColor(Color.blue); line.setTransparency(0.5); c1.add(line); # show dotted line in the USER system line = Line(-2.0, 10, -1.0, 12.0) line.setDotted(2.0) line.setColor(Color.magenta) line.setTransparency(0.5) c1.add(line) # arrow arr = Arrow(-2, 2, -2, 10) c1.add(arr) # arrow in the NDC system arr = Arrow(0.85, 0.5, 0.85, 0.7) arr.setColor(Color.blue) arr.setPosCoord("NDC") stroke = BasicStroke(5.0) arr.setStroke(stroke) arr.setType(2) c1.add(arr) # arrow in the NDC system arr = Arrow(-2.0, 4.6, -2.5, 8.0) arr.setColor(Color.black) stroke = BasicStroke(1.0) arr.setStroke(stroke) arr.setType(3) c1.add(arr) # arrow in the NDC system arr = Arrow(-3.0, 2.6, -2.0, 10.7) arr.setColor(Color.black) stroke = BasicStroke(1.0) arr.setStroke(stroke) arr.setType(1) c1.add(arr) tex= Text("This is a text",-2.4, 12) c1.add(tex) cic= Circle(-0.5, 10, 2.0) cic.setFill(1) cic.setColor(Color.red) cic.setTransparency(0.5) c1.add(cic) # filled eclipse ele= Ellipse(-1.2, 8, 1.0, 0.9) ele.setFill(1) ele.setColor(Color.green) ele.setTransparency(0.8) c1.add(ele) # show circle cic=Circle(-0.9, 11, 1.5) cic.setFill(0) c1.add(cic) # rectangle rec=Rectan(0.0, 10.0, 0.9, 1.2); rec.setFill(1); c1.add(rec); rec= Rectan(2.0, 3.0, 2.9, 1.6); rec.setFill(1); rec.setColor(Color.yellow); rec.setTransparency(0.7); c1.add(rec); # set HLabel in the USER coordinate system lab=HLabel("HLabel in USER", -2, 10); c1.add(lab); # set HLabel in the normilised coordinate system lab=HLabel("HLabel in NDC", 0.5, 0.2, "NDC"); c1.add(lab); # now show all objects c1.update(); # export to some image (png,eps,pdf,jpeg...) # c1.export(Editor.DocMasterName()+".png");
Here is the output of this example:
Post editing
jhplot.HPlotJa can be used to edit figures. For example, one can make inserts if one creates 2 plotting pads and then one can edit the pads using the "mouse-click" fashion. For example, run this script:
from java.awt import Color,Font from java.util import Random from jhplot import P1D from jhplot import HPlotJa c1 = HPlotJa("Canvas",800,600,2,1) c1.visible() c1.setAutoRange() x=10 y=20 xLeft=2 xRight=2 yLower=3 yUpper=3 xLeftSys=5 xRightSys=3 yUpperSys=3 xLowerSys=3 p1=P1D("TEST") p1.add(x,y,xLeft,xRight,yUpper,yLower,xLeftSys,xRightSys,yUpperSys,xLowerSys); p1.setErrTicSize(20) p1.setPenWidthErrSys(2) p1.setPenWidthErr(4) p1.setStyle("p") p1.setErr(1) p1.setErrSys(1) p1.setColor(Color.black) p1.setSymbolSize(7) c1.draw(p1) c1.update() # export to some image (png,eps,pdf,jpeg...) # c1.export(Editor.DocMasterName()+".png")
Then edit the figure (increase the size of one pad, and then drag the other one):
Similarly, one can achieve the same using the method "setPad()" where you can specify the location and the sizes of the plot regions
The script below creates 2 plotting pads. The second pad is located inside the first one.
Then you can plot data as usual, navigating to certain pads using the "cd(i,j)" method.
from jhplot import * c1 = HPlotJa("Canvas",600,400,2,1) c1.visible(1) # change pad positions and sizes c1.setPad(1,1,0.1, 0.1, 0.8,0.8) c1.setPad(2,1,0.5, 0.14, 0.3,0.3)
Interactive plotting
jhplot.HPlotJas canvas represents a way to prepare all objects for plotting, fitting and rebinning of data.
Polar coordinates
For the polar coordinates, use the jhplot.HChart canvas. A small code below shows ho to show a dataset filled from the X-Y array jhplot.P1D
from java.awt import Color from java.awt import Font from java.util import Random from math import * from jhplot import HChart,P1D c1 = HChart("Canvas",600,500, 2, 1) c1.setGTitle("Polar coordinates") c1.visible() c1.cd(1,1) c1.setName("Polar coordinates-I") c1.setChartPolar() p1= P1D("test 1") p2= P1D("test 2") # fill rand = Random() for i in range(20): x=4.0*i # x-value p1.add(i*4, 10.0*rand.nextGaussian()); p2.add(i*2, 5.0*rand.nextGaussian()); c1.add(p1) #c1.add(p2) c1.update() c1.cd(2,1) p3= P1D("Example") for i in range(0,3*360,5): p3.add( 90-i,i) c1.setChartPolar() c1.setName("Polar coordinates-II") c1.add(p3) c1.update() # export to some image (png,eps,pdf,jpeg...) # c1.export(Editor.DocMasterName()+".png")
Example with 2D plot regions
In the example below, we create 4 plot regions (2 by 2) and plot functions and a histogram (see DMelt:DataAnalysis/3_Histograms). Then we export the plot to EPS file for inclusion to a LaTeX document
from java.util import Random from jhplot import F2D,H2D,HPlot3D c1 = HPlot3D("Canvas",600,400,2,1) c1.visible(1) c1.setGTitle("HPlot3D canvas tests") rand =Random() h1=H2D("Test1",30,-4.5, 4.5, 30, -4.0, 4.0) for i in range(1000): h1.fill(rand.nextGaussian(),0.5*rand.nextGaussian()) c1.cd(1,1) c1.setBars() c1.draw(h1) c1.setScaling(8) c1.setRotationAngle(10) c1.update() c1.cd(2,1) c1.setSurface() c1.draw(h1)
The output of this script is shown below:
Use setAutoRange() if you want X-Y-Z ranges taken from the function definitions. Otherwise, use "setRange()" to fix ranges. Here is another example showing 2D plots with data:
from jhplot import * from java.util import Random from java.awt import Color c1 = HPlot3D("Canvas",500,500) c1.setGTitle("Interactive 3D galaxy") c1.setRange(-10,10,-10,10,-10,10) c1.setNameX("X") c1.setNameY("Y") c1.visible(1) # create P2D objects in 3D p1= P2D("Galaxy") p1.setSymbolSize(2); p1.setSymbolColor(Color.blue); rand = Random() for i in range(5000): x=3*rand.nextGaussian() y=3*rand.nextGaussian() z=0.4*rand.nextGaussian() p1.add(x,y,z) c1.draw(p1) h2=P2D("Core") h2.setSymbolSize(2) h2.setSymbolColor(Color.yellow) for i in range(5000): x=0.9*rand.nextGaussian() y=0.9*rand.nextGaussian() z=0.8*rand.nextGaussian() h2.add(x,y,z) c1.draw(h2)
The output is shown below:
Embedding in JFrame
It is possible to embed DataMelt canvases in Java java.swing.JFrame, so you can build an application with custom buttons. Here is an example:
from jhplot import * c1=HPlot("GUI") fr=c1.getFrame() # .. fill c1 frame with data (H1D,P1D) # do what you like to do, i.e. add any component # then fr.pack()
Using GROOT
DMelt includes GROOT package developed at JLab. Its syntax reminds the PyROOT environment. You can find example in Jython and Java here:
Density plots
You can also make density plots in which color represent density (or values). Look at this rather comprehensive example which shows how to plot F2D functions or 2D histograms (H2D) using several pads:
from java.awt import Color from jhplot import * c1 = HPlot3D('Canvas',600,600) c1.setNameX('X') c1.setNameY('Y') c1.setContour() c1.visible() c1.setAutoRange() f1=F2D('(0.5*x)^2+y^2', -2.0, 2.0, -2.0, 2.0) c1.draw(f1)
Waterloo scientific charts
DataMelt allows to access reach Waterloo scientific graphics package implemented in Java. The original web page is [1]. However, DataMelt only used the base of the Waterloo package. A support for Groovy and Jython is done via the internal DataMelt api.
The API of these Java libraries for scientific plotting can be found Waterloo graphics package. Let us give a small example of X-Y plot:
# This example shows how to plot X-Y using Waterloo scientific library from kcl.waterloo.swing import GCFrame from kcl.waterloo.graphics import GJGraph,GJGraphContainer from kcl.waterloo.graphics.plots2D import GJScatter,GJPlotInterface f=GCFrame("Scatter plot") gc=GJGraphContainer.createInstance(GJGraph.createInstance()) f.add(gc) x=[] y=[] for i in range(-100,100,5): x.append(i) y.append(i*i) p=GJScatter.createInstance() p.setXData(x) p.setYData(y) gc.getView().add(p) gc.getView().autoScale() print "Creating SVG image.." from kcl.waterloo.export import ExportFactory from java.io import File ExportFactory.saveAsSVG(gc, File("canvas2D_points_waterloo.svg"))
This plot shows the function x*x as shown below:
XChart scientific charts
DataMelt supports XChart library [1] and optimizes it for Jython and Groovy. You can find the API [API]
Let us give a small Jython example of a X-Y plot:
from org.knowm.xchart import BitmapEncoder; from org.knowm.xchart.BitmapEncoder import BitmapFormat; from org.knowm.xchart import VectorGraphicsEncoder; from org.knowm.xchart.VectorGraphicsEncoder import VectorGraphicsFormat; from org.knowm.xchart import XYChart; from org.knowm.xchart import XYSeries; from org.knowm.xchart.style.markers import SeriesMarkers; # Creates a simple Chart and saves it as a PNG and JPEG image file. */ xData = [0.0, 1.0, 2.0, 3.0, 4.0] yData = [2.0, 1.0, 0.0, -2.0, -3.0] # Create Chart chart = XYChart(500, 400); chart.setTitle("Sample Chart"); chart.setXAxisTitle("X"); chart.setXAxisTitle("Y"); series = chart.addSeries("y(x)", xData, yData); series.setMarker(SeriesMarkers.CIRCLE); # saving options # BitmapEncoder.saveBitmap(chart, "./Sample_Chart", BitmapFormat.PNG); # BitmapEncoder.saveBitmap(chart, "./Sample_Chart", BitmapFormat.JPG); # BitmapEncoder.saveJPGWithQuality(chart, "./Sample_Chart_With_Quality.jpg", 0.95f); # BitmapEncoder.saveBitmap(chart, "./Sample_Chart", BitmapFormat.BMP); # BitmapEncoder.saveBitmap(chart, "./Sample_Chart", BitmapFormat.GIF); # BitmapEncoder.saveBitmapWithDPI(chart, "./Sample_Chart_300_DPI", BitmapFormat.PNG, 300); # BitmapEncoder.saveBitmapWithDPI(chart, "./Sample_Chart_300_DPI", BitmapFormat.JPG, 300); # BitmapEncoder.saveBitmapWithDPI(chart, "./Sample_Chart_300_DPI", BitmapFormat.GIF, 300); #VectorGraphicsEncoder.saveVectorGraphic(chart, "./Sample_Chart", VectorGraphicsFormat.EPS); VectorGraphicsEncoder.saveVectorGraphic(chart, "./Sample_Chart", VectorGraphicsFormat.PDF); #VectorGraphicsEncoder.saveVectorGraphic(chart, "./Sample_Chart", VectorGraphicsFormat.SVG); print("Image saved: Sample_Chart.pdf")
This plot creates high-quality image like this:
The XChart library can create the following plots:
- Line charts
- Scatter charts
- Area charts
- Bar charts
- Histogram charts
- Pie charts
- Donut charts
- Bubble charts
- Stick charts
- Dial charts
- Radar charts
- OHLC charts
- Box charts
- Heat maps
- Error bars
- Logarithmic axes
- Number, Date and Category X-Axis
- Multiple series
- User-defined axes range
- Definable legend placement
All images can be created in PDF, PNG, JPG, BMP and GIF. The possibility of CSV import and export is also included.
Other charts
DataMelt can be used to plot many other types of charts, such as Candlestick chart. You can also create fully customizable layouts for 2D charts.