König's theorem (complex analysis)
In complex analysis and numerical analysis, König's theorem,[1] named after the Hungarian mathematician Gyula Kőnig, gives a way to estimate simple poles or simple roots of a function. In particular, it has numerous applications in root finding algorithms like Newton's method and its generalization Householder's method.
Statement
Given a meromorphic function defined on [math]\displaystyle{ |x|\lt R }[/math]:
- [math]\displaystyle{ f(x) = \sum_{n=0}^\infty c_nx^n, \qquad c_0\neq 0. }[/math]
which only has one simple pole [math]\displaystyle{ x=r }[/math] in this disk. Then
- [math]\displaystyle{ \frac{c_n}{c_{n+1}} = r + o(\sigma^{n+1}), }[/math]
where [math]\displaystyle{ 0\lt \sigma\lt 1 }[/math] such that [math]\displaystyle{ |r|\lt \sigma R }[/math]. In particular, we have
- [math]\displaystyle{ \lim_{n\rightarrow \infty} \frac{c_n}{c_{n+1}} = r. }[/math]
Intuition
Recall that
- [math]\displaystyle{ \frac{C}{x-r}=-\frac{C}{r}\,\frac{1}{1-x/r}=-\frac{C}{r}\sum_{n=0}^{\infty}\left[\frac{x}{r}\right]^n, }[/math]
which has coefficient ratio equal to [math]\displaystyle{ \frac{1/r^n}{1/r^{n+1}}=r. }[/math]
Around its simple pole, a function [math]\displaystyle{ f(x) = \sum_{n=0}^\infty c_nx^n }[/math] will vary akin to the geometric series and this will also be manifest in the coefficients of [math]\displaystyle{ f }[/math].
In other words, near x=r we expect the function to be dominated by the pole, i.e.
- [math]\displaystyle{ f(x)\approx\frac{C}{x-r}, }[/math]
so that [math]\displaystyle{ \frac{c_n}{c_{n+1}}\approx r }[/math].
References
- ↑ Householder, Alston Scott (1970). The Numerical Treatment of a Single Nonlinear Equation. McGraw-Hill. p. 115.
Original source: https://en.wikipedia.org/wiki/König's theorem (complex analysis).
Read more |