Cochleoid
From HandWiki
Short description: Spiral curve of the form r = a*sin(θ)/θ
In geometry, a cochleoid is a snail-shaped curve similar to a strophoid which can be represented by the polar equation
- [math]\displaystyle{ r=\frac{a \sin \theta}{\theta}, }[/math]
the Cartesian equation
- [math]\displaystyle{ (x^2+y^2)\arctan\frac{y}{x}=ay, }[/math]
or the parametric equations
- [math]\displaystyle{ x=\frac{a\sin t\cos t}{t}, \quad y=\frac{a\sin^2 t}{t}. }[/math]
The cochleoid is the inverse curve of Hippias' quadratrix.[1]
Notes
References
- J. Dennis Lawrence (1972). A catalog of special plane curves. Dover Publications. p. 192. ISBN 0-486-60288-5. https://archive.org/details/catalogofspecial00lawr/page/192.
- Cochleoid in the Encyclopedia of Mathematics
- Liliana Luca, Iulian Popescu: A Special Spiral: The Cochleoid. Fiabilitate si Durabilitate - Fiability & Durability no 1(7)/ 2011, Editura "Academica Brâncuşi" , Târgu Jiu, ISSN 1844-640X
- Roscoe Woods: The Cochlioid. The American Mathematical Monthly, Vol. 31, No. 5 (May, 1924), pp. 222–227 (JSTOR)
- Howard Eves: A Graphometer. The Mathematics Teacher, Vol. 41, No. 7 (November 1948), pp. 311-313 (JSTOR)
External links
- cochleoid at 2dcurves.com
- Weisstein, Eric W.. "Cochleoid". http://mathworld.wolfram.com/Cochleoid.html.
Original source: https://en.wikipedia.org/wiki/Cochleoid.
Read more |