Kanamori–McAloon theorem

From HandWiki
Revision as of 05:01, 27 June 2023 by Sherlock (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematical logic, the Kanamori–McAloon theorem, due to (Kanamori McAloon), gives an example of an incompleteness in Peano arithmetic, similar to that of the Paris–Harrington theorem. They showed that a certain finitistic theorem in Ramsey theory is not provable in Peano arithmetic (PA).

Statement

Given a set [math]\displaystyle{ s\subseteq\mathbb{N} }[/math] of non-negative integers, let [math]\displaystyle{ \min(s) }[/math] denote the minimum element of [math]\displaystyle{ s }[/math]. Let [math]\displaystyle{ [X]^n }[/math] denote the set of all n-element subsets of [math]\displaystyle{ X }[/math].

A function [math]\displaystyle{ f:[X]^n\rightarrow\mathbb{N} }[/math] where [math]\displaystyle{ X\subseteq\mathbb{N} }[/math] is said to be regressive if [math]\displaystyle{ f(s)\lt \min(s) }[/math] for all [math]\displaystyle{ s }[/math] not containing 0.

The Kanamori–McAloon theorem states that the following proposition, denoted by [math]\displaystyle{ (*) }[/math] in the original reference, is not provable in PA:

For every [math]\displaystyle{ n,k\in\mathbb{N} }[/math], there exists an [math]\displaystyle{ m\in\mathbb{N} }[/math] such that for all regressive [math]\displaystyle{ f:[\{0,1,\ldots,m-1\}]^n\rightarrow\mathbb{N} }[/math], there exists a set [math]\displaystyle{ H\in[\{0,1,\ldots,m-1\}]^k }[/math] such that for all [math]\displaystyle{ s,t\in[H]^n }[/math] with [math]\displaystyle{ \min(s)=\min(t) }[/math], we have [math]\displaystyle{ f(s)=f(t) }[/math].

See also

References