Localizing subcategory

From HandWiki
Revision as of 08:44, 27 June 2023 by OrgMain (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, Serre and localizing subcategories form important classes of subcategories of an abelian category. Localizing subcategories are certain Serre subcategories. They are strongly linked to the notion of a quotient category.

Serre subcategories

Let [math]\displaystyle{ \mathcal{A} }[/math] be an abelian category. A non-empty full subcategory [math]\displaystyle{ \mathcal{C} }[/math] is called a Serre subcategory (or also a dense subcategory), if for every short exact sequence [math]\displaystyle{ 0\rightarrow A' \rightarrow A\rightarrow A''\rightarrow 0 }[/math] in [math]\displaystyle{ \mathcal{A} }[/math] the object [math]\displaystyle{ A }[/math] is in [math]\displaystyle{ \mathcal{C} }[/math] if and only if the objects [math]\displaystyle{ A' }[/math] and [math]\displaystyle{ A'' }[/math] belong to [math]\displaystyle{ \mathcal{C} }[/math]. In words: [math]\displaystyle{ \mathcal{C} }[/math] is closed under subobjects, quotient objects and extensions.

Each Serre subcategory [math]\displaystyle{ \mathcal{C} }[/math] of [math]\displaystyle{ \mathcal{A} }[/math] is itself an abelian category, and the inclusion functor [math]\displaystyle{ \mathcal{C}\to\mathcal{A} }[/math] is exact. The importance of this notion stems from the fact that kernels of exact functors between abelian categories are Serre subcategories, and that one can build (for locally small [math]\displaystyle{ \mathcal{A} }[/math]) the quotient category (in the sense of Gabriel, Grothendieck, Serre) [math]\displaystyle{ \mathcal{A}/\mathcal{C} }[/math], which has the same objects as [math]\displaystyle{ \mathcal{A} }[/math], is abelian, and comes with an exact functor (called the quotient functor) [math]\displaystyle{ T\colon\mathcal{A}\rightarrow\mathcal{A}/\mathcal{C} }[/math] whose kernel is [math]\displaystyle{ \mathcal{C} }[/math].

Localizing subcategories

Let [math]\displaystyle{ \mathcal{A} }[/math] be locally small. The Serre subcategory [math]\displaystyle{ \mathcal{C} }[/math] is called localizing if the quotient functor [math]\displaystyle{ T\colon\mathcal{A}\rightarrow\mathcal{A}/\mathcal{C} }[/math] has a right adjoint [math]\displaystyle{ S\colon\mathcal{A}/\mathcal{C}\rightarrow\mathcal{A} }[/math]. Since then [math]\displaystyle{ T }[/math], as a left adjoint, preserves colimits, each localizing subcategory is closed under colimits. The functor [math]\displaystyle{ T }[/math] (or sometimes [math]\displaystyle{ ST }[/math]) is also called the localization functor, and [math]\displaystyle{ S }[/math] the section functor. The section functor is left-exact and fully faithful.

If the abelian category [math]\displaystyle{ \mathcal{A} }[/math] is moreover cocomplete and has injective hulls (e.g. if it is a Grothendieck category), then a Serre subcategory [math]\displaystyle{ \mathcal{C} }[/math] is localizing if and only if [math]\displaystyle{ \mathcal{C} }[/math] is closed under arbitrary coproducts (a.k.a. direct sums). Hence the notion of a localizing subcategory is equivalent to the notion of a hereditary torsion class.

If [math]\displaystyle{ \mathcal{A} }[/math] is a Grothendieck category and [math]\displaystyle{ \mathcal{C} }[/math] a localizing subcategory, then [math]\displaystyle{ \mathcal{C} }[/math] and the quotient category [math]\displaystyle{ \mathcal{A}/\mathcal{C} }[/math] are again Grothendieck categories.

The Gabriel-Popescu theorem implies that every Grothendieck category is the quotient category of a module category [math]\displaystyle{ \operatorname{Mod}(R) }[/math] (with [math]\displaystyle{ R }[/math] a suitable ring) modulo a localizing subcategory.

See also

References

  • Nicolae Popescu; 1973; Abelian Categories with Applications to Rings and Modules; Academic Press, Inc.; out of print.