Peano kernel theorem
In numerical analysis, the Peano kernel theorem is a general result on error bounds for a wide class of numerical approximations (such as numerical quadratures), defined in terms of linear functionals. It is attributed to Giuseppe Peano.[1]
Statement
Let [math]\displaystyle{ \mathcal{V}[a,b] }[/math] be the space of all functions [math]\displaystyle{ f }[/math] that are differentiable on [math]\displaystyle{ (a,b) }[/math] that are of bounded variation on [math]\displaystyle{ [a,b] }[/math], and let [math]\displaystyle{ L }[/math] be a linear functional on [math]\displaystyle{ \mathcal{V}[a,b] }[/math]. Assume that that [math]\displaystyle{ L }[/math] annihilates all polynomials of degree [math]\displaystyle{ \leq \nu }[/math], i.e.[math]\displaystyle{ Lp=0,\qquad \forall p\in\mathbb{P}_\nu[x]. }[/math]Suppose further that for any bivariate function [math]\displaystyle{ g(x,\theta) }[/math] with [math]\displaystyle{ g(x,\cdot),\,g(\cdot,\theta)\in C^{\nu+1}[a,b] }[/math], the following is valid:[math]\displaystyle{ L\int_a^bg(x,\theta)\,d\theta=\int_a^bLg(x,\theta)\,d\theta, }[/math]and define the Peano kernel of [math]\displaystyle{ L }[/math] as[math]\displaystyle{ k(\theta)=L[(x-\theta)^\nu_+],\qquad\theta\in[a,b], }[/math]using the notation[math]\displaystyle{ (x-\theta)^\nu_+ = \begin{cases} (x-\theta)^\nu, & x\geq\theta, \\ 0, & x\leq\theta. \end{cases} }[/math]The Peano kernel theorem[1][2] states that, if [math]\displaystyle{ k\in\mathcal{V}[a,b] }[/math], then for every function [math]\displaystyle{ f }[/math] that is [math]\displaystyle{ \nu+1 }[/math] times continuously differentiable, we have [math]\displaystyle{ Lf=\frac{1}{\nu!}\int_a^bk(\theta)f^{(\nu+1)}(\theta)\,d\theta. }[/math]
Bounds
Several bounds on the value of [math]\displaystyle{ Lf }[/math] follow from this result:[math]\displaystyle{ \begin{align} |Lf|&\leq\frac{1}{\nu!}\|k\|_1\|f^{(\nu+1)}\|_\infty\\[5pt] |Lf|&\leq\frac{1}{\nu!}\|k\|_\infty\|f^{(\nu+1)}\|_1\\[5pt] |Lf|&\leq\frac{1}{\nu!}\|k\|_2\|f^{(\nu+1)}\|_2 \end{align} }[/math]
where [math]\displaystyle{ \|\cdot\|_1 }[/math], [math]\displaystyle{ \|\cdot\|_2 }[/math] and [math]\displaystyle{ \|\cdot\|_\infty }[/math]are the taxicab, Euclidean and maximum norms respectively.[2]
Application
In practice, the main application of the Peano kernel theorem is to bound the error of an approximation that is exact for all [math]\displaystyle{ f\in\mathbb{P}_\nu }[/math]. The theorem above follows from the Taylor polynomial for [math]\displaystyle{ f }[/math] with integral remainder:
- [math]\displaystyle{ \begin{align} f(x)=f(a) + {} & (x-a)f'(a) + \frac{(x-a)^2}{2}f''(a)+\cdots \\[6pt] & \cdots+\frac{(x-a)^\nu}{\nu!}f^{(\nu)}(a)+ \frac{1}{\nu!}\int_a^x(x-\theta)^\nu f^{(\nu+1)}(\theta)\,d\theta, \end{align} }[/math]
defining [math]\displaystyle{ L(f) }[/math] as the error of the approximation, using the linearity of [math]\displaystyle{ L }[/math] together with exactness for [math]\displaystyle{ f\in\mathbb{P}_\nu }[/math] to annihilate all but the final term on the right-hand side, and using the [math]\displaystyle{ (\cdot)_+ }[/math] notation to remove the [math]\displaystyle{ x }[/math]-dependence from the integral limits.[3]
See also
References
- ↑ 1.0 1.1 Ridgway Scott, L. (2011). Numerical analysis. Princeton, N.J.: Princeton University Press. pp. 209. ISBN 9780691146867. OCLC 679940621. https://archive.org/details/numericalanalysi00lrsc.
- ↑ 2.0 2.1 Iserles, Arieh (2009). A first course in the numerical analysis of differential equations (2nd ed.). Cambridge: Cambridge University Press. pp. 443–444. ISBN 9780521734905. OCLC 277275036. https://archive.org/details/firstcoursenumer00aise.
- ↑ Iserles, Arieh (1997). "Numerical Analysis". http://www.damtp.cam.ac.uk/user/examples/D3Ll.pdf.
Original source: https://en.wikipedia.org/wiki/Peano kernel theorem.
Read more |