Engineering:SEDSAT-1

From HandWiki
Revision as of 12:46, 4 February 2024 by SpringEdit (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: American amateur radio satellite
SEDSAT-1
SEDSAT 1.jpg
SEDSAT-1 satellite.
Mission typeCommunications
OperatorAMSAT
COSPAR ID1998-061B
SATCAT no.25509
Spacecraft properties
ManufacturerUniversity of Alabama
Launch mass35 kg (77 lb)
Dimensions32.13 cm × 32.13 cm × 35.43 cm (12.65 in × 12.65 in × 13.95 in)[1]
Start of mission
Launch date24 October 1998, 12:08 UTC
RocketDelta-7326 D-261
Launch siteCape Canaveral Air Force Station SLC-17A
Orbital parameters
Reference systemGeocentric
RegimeLow Earth
Eccentricity0.03699
Perigee altitude547 kilometres (340 mi)
Apogee altitude1,079 kilometres (670 mi)
Inclination31.4°
Period101 minutes
Epoch24 October 1998[2]
OSCAR
← OSCAR 32
 

SEDSAT-1 (also known as SEDSAT-OSCAR 33) is a U.S. amateur radio satellite built by students and developed at the University of Alabama in Huntsville (UAH).

The microsatellite bears the name of one of its sponsoring organizations, the Students for the Exploration and Development of Space (SEDS). It was launched into a low Earth orbit on October 24, 1998 as a Secondary payload with the Deep Space 1 spacecraft using a Delta II rocket at Cape Canaveral Air Force Station , Florida, USA.

History

The satellite was to be built by the partnership between NASA's Marshall Space Flight Center and UAH with the primary objective of testing a newly developed small expendable deployer system developed for NASA's Space Shuttle, while allowing the students to add instrumentation to complete secondary missions after the primary data regarding the deployer's tether system had been captured.[3] After the Tethered Satellite System (TSS-1R) experienced a failure resulting in the ignition of a strong electrical discharge shortly after being deployed from the Space Shuttle Columbia in 1996, the small expendable deployer system was subject to a Space Shuttle safety review that resulted in extensive design and requirements changes.[4] As a result, SEDSAT-1 became a free-flying secondary payload on the Delta II, after securing sponsorship from other governmental and commercial partners.[5]

Mission

The satellite was intended to have a novel link to the internet that would allow amateur radio operators from around the globe to request and receive imagery from the satellite anytime it flew overhead.[6] To this end, the satellite carries two cameras as part of the SEASIS (SEDS, earth, atmosphere, and space imaging system) instrument.[7] SEDSAT-1 also includes instruments which monitor battery performance management and control. After launch, telemetry data was received at the satellite's university led mission control center at the University of Arizona in Tucson, AZ. However, an uplink could never be established and no photographic data could be received from the SEASIS instrument. The telemetry data received from the satellite did allow for some of the battery control experiments to be received, and as of 2013 the satellite is still active.[8]

Frequency

See also

  • OSCAR

Bibliography

  • Mark W. Maier, Shi-Tsan Wu: SEDSAT-1 lessons learned. In: F.-B. Hsiao (Hrsg.): Microsatellites as research tools. Elsevier, Amsterdam 1999, pg. 365–375.
  • Students for the Exploration and Development of Space Satellite. In: NASA Historical Data Book, Volume VII. Government Printing Office, Washington, D.C. 2009, pg. 669–671

References

  1. Gunter Dirk Krebs. "SEDSat 1 (SO 33, SEDSat-OSCAR 33)". Gunter's Space Page. https://space.skyrocket.de/doc_sdat/sedsat.htm. Retrieved 10 February 2020. 
  2. NASA GSFC. "Telemetry Details". NSSDCA Master Catalog. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/displayTrajectory.action?id=1998-061B. Retrieved 10 February 2020. 
  3. COSPAR Colloquium on Microsatellites as Research Tools (Tʻai-nan shih, Taiwan) (1997). Auteur. (2014). Microsatellites as research tools proceedings of COSPAR Colloquium on Microsatellites as Research Tools held in Tainan, Taiwan, 14-17 December 1997. Pergamon. ISBN 978-0-444-50196-7. OCLC 881679774. 
  4. Stone, N. H.; Bonifazi, C. (1998). "The TSS-1R Mission: Overview and scientific context" (in en). Geophysical Research Letters 25 (4): 409–412. doi:10.1029/97GL02980. ISSN 1944-8007. Bibcode1998GeoRL..25..409S. 
  5. "Project Information Details". http://archive.seds.org/sedsat/info/sponsors.html. 
  6. "SEDSAT Puts Students Over The Earth". https://www.spacedaily.com/news/sedsat-98a.html. 
  7. Bankston, Cheryl Dawn (1994-06-08). "SEDS, earth, atmosphere, and space imaging system (SEASIS)". Space Instrumentation and Dual-Use Technologies (International Society for Optics and Photonics) 2214: 257–268. doi:10.1117/12.177665. Bibcode1994SPIE.2214..257B. 
  8. "SEDSat 1 (SO 33, SEDSat-OSCAR 33)". https://space.skyrocket.de/doc_sdat/sedsat.htm. 
  9. N2yo.com. "SEDSAT 1". https://www.n2yo.com/satellite/?s=25509. Retrieved 10 February 2020.