Engineering:Thermal shock synthesis

From HandWiki
Revision as of 21:05, 4 February 2024 by Wincert (talk | contribs) (correction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Thermal shock synthesis (TSS) is a method in which materials are synthesized via rapid, high-temperature heating. In the TSS process, temperatures as high as 3000 K are applied for a duration of just seconds or milliseconds, followed by rapid cooling (a TSS image shown in Fig. 1).[1][2][3] In this regard, TSS is distinct from conventional high-temperature syntheses that feature slow and near-equilibrium heating at limited temperature ranges (e.g., 1500 K for furnace heating) for extended periods of time (typically hours) and generally slow heating and cooling (~10 K/min). TSS utilizes high temperature to drive reactions at extreme and non-equilibrium conditions. Additionally, the use of the ultra-high temperature can dramatically increase reaction rates for rapid material production.[1][4] As a result of these characteristics, TSS is particularly applicable for the discovery of new reactions and materials and enabling rapid manufacturing.

Realization

The TSS method was invented by Dr. Liangbing Hu and his team at the University of Maryland, College Park. The technology is also patented.[5][6] The TSS was first realized by Joule heating of carbon materials to a high temperature and rapidly quenched with a short duration, which are controlled by electric power with a high temporal resolution.[1][3] The essence of TSS is the ability to precisely control the high temperature to ensure rapid “shock” heating. Generally, the temperature, duration, and ramping rate can be independently controlled for specific heating requirements.

Since high-temperature heating is ubiquitously used for reactions and materials synthesis, innovative TSS processes have been discovered and demonstrated, including microwave, laser, rapid radiative heating, and discharge flash heating,[4][7][8][9][10][11] enabling synthesis of diverse emerging materials, such as single atom and alloyed catalysts, high entropy alloy nanoparticles, nanoscale composites, battery cathodes and anodes, and high-quality graphene, etc.[1][4][7][8][9][10][12][13][14]

References

  1. 1.0 1.1 1.2 1.3 Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin et al. (2018-03-30). "Carbothermal shock synthesis of high-entropy-alloy nanoparticles" (in en). Science 359 (6383): 1489–1494. doi:10.1126/science.aan5412. ISSN 0036-8075. PMID 29599236. 
  2. Bao, Wenzhong; Pickel, Andrea D.; Zhang, Qing; Chen, Yanan; Yao, Yonggang; Wan, Jiayu; Fu, Kun(Kelvin); Wang, Yibo et al. (2016). "Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper". Advanced Materials 28 (23): 4684–4691. doi:10.1002/adma.201506116. ISSN 1521-4095. PMID 27000725. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201506116. 
  3. 3.0 3.1 Chen, Yanan; Egan, Garth C.; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin et al. (2016-08-12). "Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films" (in en). Nature Communications 7 (1): 12332. doi:10.1038/ncomms12332. ISSN 2041-1723. PMID 27515900. 
  4. 4.0 4.1 4.2 Luong, Duy X.; Bets, Ksenia V.; Algozeeb, Wala Ali; Stanford, Michael G.; Kittrell, Carter; Chen, Weiyin; Salvatierra, Rodrigo V.; Ren, Muqing et al. (2020). "Gram-scale bottom-up flash graphene synthesis" (in en). Nature 577 (7792): 647–651. doi:10.1038/s41586-020-1938-0. ISSN 1476-4687. PMID 31988511. 
  5. Hu, Liangbing; Yanan Chen & Yonggang Yao, "Nanoparticles and systems and methods for synthesizing nanoparticles through thermal shock", US patent 2018369771, published 2018-12-27
  6. Yao, Yonggang & Liangbing Hu, "Thermal shock synthesis of multielement nanoparticles", US patent 11193191, published 2021-12-07
  7. 7.0 7.1 Wang, Xizheng; Huang, Zhennan; Yao, Yonggang; Qiao, Haiyu; Zhong, Geng; Pei, Yong; Zheng, Chaolun; Kline, Dylan et al. (2020-05-01). "Continuous 2000 K droplet-to-particle synthesis" (in en). Materials Today 35: 106–114. doi:10.1016/j.mattod.2019.11.004. ISSN 1369-7021. 
  8. 8.0 8.1 Gao, Shaojie; Hao, Shaoyun; Huang, Zhennan; Yuan, Yifei; Han, Song; Lei, Lecheng; Zhang, Xingwang; Shahbazian-Yassar, Reza et al. (2020-04-24). "Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis" (in en). Nature Communications 11 (1): 2016. doi:10.1038/s41467-020-15934-1. ISSN 2041-1723. PMID 32332743. 
  9. 9.0 9.1 Voiry, Damien; Yang, Jieun; Kupferberg, Jacob; Fullon, Raymond; Lee, Calvin; Jeong, Hu Young; Shin, Hyeon Suk; Chhowalla, Manish (2016-09-23). "High-quality graphene via microwave reduction of solution-exfoliated graphene oxide" (in en). Science 353 (6306): 1413–1416. doi:10.1126/science.aah3398. ISSN 0036-8075. PMID 27708034. 
  10. 10.0 10.1 Chen, Xianjue; Bo, Xin; Ren, Wenhao; Chen, Sheng; Zhao, Chuan (2019-06-27). "Microwave-assisted shock synthesis of diverse ultrathin graphene-derived materials" (in en). Materials Chemistry Frontiers 3 (7): 1433–1439. doi:10.1039/C9QM00113A. ISSN 2052-1537. https://pubs.rsc.org/en/content/articlelanding/2019/qm/c9qm00113a. 
  11. Yang, Yong; Yao, Yonggang; Kline, Dylan J.; Li, Tangyuan; Ghildiyal, Pankaj; Wang, Haiyang; Hu, Liangbing; Zachariah, Michael R. (2020-03-27). "Rapid Laser Pulse Synthesis of Supported Metal Nanoclusters with Kinetically Tunable Size and Surface Density for Electrocatalytic Hydrogen Evolution". ACS Applied Nano Materials 3 (3): 2959–2968. doi:10.1021/acsanm.0c00238. https://doi.org/10.1021/acsanm.0c00238. 
  12. Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A.; Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang et al. (2016-09-14). "Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock". Nano Letters 16 (9): 5553–5558. doi:10.1021/acs.nanolett.6b02096. ISSN 1530-6984. PMID 27505433. https://doi.org/10.1021/acs.nanolett.6b02096. 
  13. Xie, Pengfei; Yao, Yonggang; Huang, Zhennan; Liu, Zhenyu; Zhang, Junlei; Li, Tangyuan; Wang, Guofeng; Shahbazian-Yassar, Reza et al. (2019-09-05). "Highly efficient decomposition of ammonia using high-entropy alloy catalysts" (in en). Nature Communications 10 (1): 4011. doi:10.1038/s41467-019-11848-9. ISSN 2041-1723. PMID 31488814. 
  14. Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Wu, Lianping; Ma, Lu; Li, Tangyuan; Pang, Zhenqian; Jiao, Miaolun et al. (2019). "High temperature shockwave stabilized single atoms" (in en). Nature Nanotechnology 14 (9): 851–857. doi:10.1038/s41565-019-0518-7. ISSN 1748-3395. PMID 31406363. https://www.nature.com/articles/s41565-019-0518-7. 

External links

High-entropy-alloy nanoparticles