Physics:Molar refractivity

From HandWiki
Revision as of 03:17, 5 February 2024 by NBrushPhys (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Molar refractivity,[1] [math]\displaystyle{ A }[/math], is a measure of the total polarizability of a mole of a substance and is dependent on the temperature, the index of refraction, and the pressure.

The molar refractivity is defined as

[math]\displaystyle{ A = \frac{4 \pi}{3} N_A \alpha, }[/math]

where [math]\displaystyle{ N_A \approx 6.022 \times 10^{23} }[/math] is the Avogadro constant and [math]\displaystyle{ \alpha }[/math] is the mean polarizability of a molecule.

Substituting the molar refractivity into the Lorentz-Lorenz formula gives, for gasses

[math]\displaystyle{ A = \frac{R T}{p} \frac{n^2 - 1}{n^2 + 2} }[/math]

where [math]\displaystyle{ n }[/math] is the refractive index, [math]\displaystyle{ p }[/math] is the pressure of the gas, [math]\displaystyle{ R }[/math] is the universal gas constant, and [math]\displaystyle{ T }[/math] is the (absolute) temperature. For a gas, [math]\displaystyle{ n^2 \approx 1 }[/math], so the molar refractivity can be approximated by

[math]\displaystyle{ A = \frac{R T}{p} \frac{n^2 - 1}{3}. }[/math]

In SI units, [math]\displaystyle{ R }[/math] has units of J mol−1 K−1, [math]\displaystyle{ T }[/math] has units K, [math]\displaystyle{ n }[/math] has no units, and [math]\displaystyle{ p }[/math] has units of Pa, so the units of [math]\displaystyle{ A }[/math] are m3 mol−1.

In terms of density ρ, molecular weight M, it can be shown that:

[math]\displaystyle{ A = \frac{M}{\rho} \frac{n^2 - 1}{n^2 + 2} \approx \frac{M}{\rho} \frac{n^2 - 1}{3}. }[/math]

References

  1. W. Foerst et.al. Chemie für Labor und Betrieb, 1967, 3, 32-34. https://organic-btc-ilmenau.jimdo.com/app/download/9062135220/molrefraktion.pdf?t=1616948905
  • Born, Max, and Wolf, Emil, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.), section 2.3.3, Cambridge University Press (1999) ISBN:0-521-64222-1