Physics:Molar refractivity
Molar refractivity,[1] [math]\displaystyle{ A }[/math], is a measure of the total polarizability of a mole of a substance and is dependent on the temperature, the index of refraction, and the pressure.
The molar refractivity is defined as
- [math]\displaystyle{ A = \frac{4 \pi}{3} N_A \alpha, }[/math]
where [math]\displaystyle{ N_A \approx 6.022 \times 10^{23} }[/math] is the Avogadro constant and [math]\displaystyle{ \alpha }[/math] is the mean polarizability of a molecule.
Substituting the molar refractivity into the Lorentz-Lorenz formula gives, for gasses
- [math]\displaystyle{ A = \frac{R T}{p} \frac{n^2 - 1}{n^2 + 2} }[/math]
where [math]\displaystyle{ n }[/math] is the refractive index, [math]\displaystyle{ p }[/math] is the pressure of the gas, [math]\displaystyle{ R }[/math] is the universal gas constant, and [math]\displaystyle{ T }[/math] is the (absolute) temperature. For a gas, [math]\displaystyle{ n^2 \approx 1 }[/math], so the molar refractivity can be approximated by
- [math]\displaystyle{ A = \frac{R T}{p} \frac{n^2 - 1}{3}. }[/math]
In SI units, [math]\displaystyle{ R }[/math] has units of J mol−1 K−1, [math]\displaystyle{ T }[/math] has units K, [math]\displaystyle{ n }[/math] has no units, and [math]\displaystyle{ p }[/math] has units of Pa, so the units of [math]\displaystyle{ A }[/math] are m3 mol−1.
In terms of density ρ, molecular weight M, it can be shown that:
- [math]\displaystyle{ A = \frac{M}{\rho} \frac{n^2 - 1}{n^2 + 2} \approx \frac{M}{\rho} \frac{n^2 - 1}{3}. }[/math]
References
- ↑ W. Foerst et.al. Chemie für Labor und Betrieb, 1967, 3, 32-34. https://organic-btc-ilmenau.jimdo.com/app/download/9062135220/molrefraktion.pdf?t=1616948905
- Born, Max, and Wolf, Emil, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.), section 2.3.3, Cambridge University Press (1999) ISBN:0-521-64222-1
Original source: https://en.wikipedia.org/wiki/Molar refractivity.
Read more |