Physics:Spin stiffness
The spin stiffness or spin rigidity or helicity modulus or the "superfluid density" (for bosons the superfluid density is proportional to the spin stiffness) is a constant which represents the change in the ground state energy of a spin system as a result of introducing a slow in plane twist of the spins. The importance of this constant is in its use as an indicator of quantum phase transitions—specifically in models with metal-insulator transitions such as Mott insulators. It is also related to other topological invariants such as the Berry phase and Chern numbers as in the Quantum Hall effect.
Mathematically
Mathematically it can be defined by the following equation:
- [math]\displaystyle{ \rho_s = \cfrac{\partial^2}{\partial \theta^2}\cfrac{E_0(\theta)}{N}|_{\theta = 0} }[/math]
where [math]\displaystyle{ E_0 }[/math] is the ground state energy, [math]\displaystyle{ \theta }[/math] is the twisting angle, and N is the number of lattice sites.
Spin stiffness of the Heisenberg model
Start off with the simple Heisenberg spin Hamiltonian:
- [math]\displaystyle{ H_\mathrm{Heisenberg} = -J \sum_{\lt i,j\gt } \left[S_i^z S_j^z + \cfrac{1}{2}(S_i^+ S_j^- + S_i^- S_j^+)\right] }[/math]
Now we introduce a rotation in the system at site i by an angle θi around the z-axis:
- [math]\displaystyle{ S_i^+ \longrightarrow S_i^+e^{i \theta_i} }[/math]
- [math]\displaystyle{ S_i^- \longrightarrow S_i^-e^{-i \theta_i} }[/math]
Plugging these back into the Heisenberg Hamiltonian:
- [math]\displaystyle{ H(\theta_{ij}) = -J \sum_{\lt i,j\gt } \left[S_i^z S_j^z + \cfrac{1}{2}(S_i^+e^{i\theta_i} S_j^-e^{-i\theta_j} + S_i^-e^{-i\theta_i} S_j^+e^{i\theta_j})\right] }[/math]
now let θij = θi - θj and expand around θij = 0 via a MacLaurin expansion only keeping terms up to second order in θij
- [math]\displaystyle{ H \approx H_\mathrm{Heisenberg} - J \sum_{\lt ij\gt } \left[\theta_{ij}J_{ij}^{(s)} - \cfrac{1}{2}\theta_{ij}^2 T_{ij}^{(s)}\right] }[/math]
where the first term is independent of θ and the second term is a perturbation for small θ.
- [math]\displaystyle{ J_{ij}^{s} = \cfrac{i}{2}(S_i^+ S_j^- - S_i^- S_j^+) }[/math] is the z-component of the spin current operator
- [math]\displaystyle{ T_{ij} = \cfrac{1}{2}(S_i^+ S_j^- + S_i^- S_j^+) }[/math] is the "spin kinetic energy"
Consider now the case of identical twists, θx only that exist along nearest neighbor bonds along the x-axis. Then since the spin stiffness is related to the difference in the ground state energy by
- [math]\displaystyle{ E(\theta) - E(0) = N\rho_s\theta_x^2 }[/math]
then for small θx and with the help of second order perturbation theory we get:
- [math]\displaystyle{ \rho_s = \cfrac{1}{N} \left[ \cfrac{1}{2}\langle T_x \rangle + \sum_{\nu \neq 0} \cfrac{ | \langle 0| j_x^{(s)}|\nu\rangle |^2 }{E_{\nu} - E_0}\right] }[/math]
See also
References
- S.E. Krüger; R. Darradi; J. Richter; D.J.J. Farnell (2006). "Direct calculation of the spin stiffness of the spin-(1/2) Heisenberg antiferromagnet on square, triangular, and cubic lattices using the coupled-cluster method". Physical Review B 73 (9): 094404. doi:10.1103/PhysRevB.73.094404. Bibcode: 2006PhRvB..73i4404K.
- J. Bonča; J.P. Rodriguez; J. Ferrer; K.S. Bedell (1994). "Direct calculation of spin stiffness for spin-1/2 Heisenberg models". Physical Review B 50 (5): 3415–3418. doi:10.1103/PhysRevB.50.3415. PMID 9976600. Bibcode: 1994PhRvB..50.3415B.
- T. Einarsson; H.J. Schulz (1994). "Direct Calculation of the Spin Stiffness in the J1−J2 Heisenberg Antiferromagnet". Physical Review B 51 (9): 6151–6154. doi:10.1103/PhysRevB.51.6151. PMID 9979543. Bibcode: 1995PhRvB..51.6151E.
- B.S. Shastry; B. Sutherland (1990). "Twisted boundary conditions and effective mass in Heisenberg–Ising and Hubbard rings". Physical Review Letters 65 (2): 243–246. doi:10.1103/PhysRevLett.65.243. PMID 10042589. Bibcode: 1990PhRvL..65..243S.
- R.R.P. Singh; D.A. Huse (1989). "Microscopic calculation of the spin-stiffness constant for the spin-(1/2) square-lattice Heisenberg antiferromagnet". Physical Review B 40 (10): 7247–7251. doi:10.1103/PhysRevB.40.7247. PMID 9991112. Bibcode: 1989PhRvB..40.7247S.
- R. G. Melko, A. W. Sandvik, and D. J. Scalapino1 (2004). "Two-dimensional quantum XY model with ring exchange and external field". Physical Review B 69 (10): 100408–100412. doi:10.1103/PhysRevB.69.100408. Bibcode: 2004PhRvB..69j0408M.
Original source: https://en.wikipedia.org/wiki/Spin stiffness.
Read more |