Physics:Static fatigue

From HandWiki
Revision as of 05:48, 5 February 2024 by Gametune (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Static fatigue describes how prolonged and constant cyclic stress weakens a material until it breaks apart, which is called failure.[1] It is sometimes called "delayed fracture".[2] This damage happens at a smaller stress level than the stress level needed to create a normal tensile fracture.[2] Static fatigue can involve plastic deformation[3] or crack growth.[4][5] For example, repeated stress can create small cracks that grow and eventually break apart plastic,[6] glass,[7] and ceramic[8] materials. The material reaches failure faster by increasing cyclic stress. Static fatigue varies with material type and environmental factors such as moisture presence[9] and temperature.[10][11]

Applications

Static fatigue tests can estimate a material’s lifetime[12] and hardness to different environments[13].  However, measuring a static fatigue limit takes a long time, and it is hard to measure a material’s true static fatigue limit with full certainty.[12]

Typical occurrence

Crack growth progression in a glass rod under cyclic stress (denoted by arrows). (1) shows the first crack. The cracks grow in (2) & (3) until the rod breaks in (4).

Stress corrosion cracking

Plastic Deformation (Plastic Flow)

Plastic deformation happens when stresses flatten, bend, or twist a material until it no longer returns to its original shape.[14] This can create several cracks in the material and decrease its lifetime.[3]

Examples of Static Fatigue and Stresses on Materials

Plastic pipes under water or other fluids experience hydrodynamic forces resulting in fatigue.[15] The pipes reach failure sooner with higher temperature or increased exposure to aggressive substances.[15] For static fatigue tests, rotating machines apply weight on the material under study causing it to bend in different directions, which weakens the material overtime.[16]

References

  1. In Materials, Woodhead Publishing (2010). Guedes, Rui Miranda. ed. Creep and Fatigue in Polymer Matrix Composites (1st ed.). Woodhead Publishing. ISBN 9780081014585. https://www.elsevier.com/books/creep-and-fatigue-in-polymer-matrix-composites/guedes/978-1-84569-656-6. 
  2. 2.0 2.1 Pelleg, Josh (2021). Cyclic Deformation in Oxides, Carbides, and Nitrides. 22. Springer. pp. 495–511. doi:10.1007/978-3-030-86118-6_15. ISBN 978-3-030-86118-6. https://link.springer.com/chapter/10.1007/978-3-030-86118-6_15. 
  3. 3.0 3.1 Wang, G.S.; Blom, A.F.. "Effect of Large Local Plastic Flow on the Fatigue Life of Metallic Materials". Aeronautics Division. https://www.gruppofrattura.it/ocs/index.php/ICF/ICF11/paper/viewFile/9810/9226. 
  4. Courtney, Thomas H. (2005-12-16) (in en). Mechanical Behavior of Materials: Second Edition. Waveland Press. ISBN 9781478608387. https://books.google.com/books?id=QcYSAAAAQBAJ&dq=mechanical+behavior+of+material+Thomas&pg=PR3. 
  5. Furmanski, J.; Rimnac, C.M. (2011). "Crack Propagation Resistance Is Similar Under Static and Cyclic Loading in Crosslinked UHMWPE: A Pilot Study". Clinical Orthopaedics and Related Research 469 (8): 2302–2307. doi:10.1007/s11999-010-1712-y. PMID 21128033. 
  6. Crawford, Roy. J. (1998). Plastics Engineering (Chapter 1 - General Properties of Plastics) (1 ed.). Matthew Deans. pp. 1–40. ISBN 9780081007099. https://www.sciencedirect.com/science/article/pii/B9780750637640500030. 
  7. Grutzik, S.J.; Strong, K.T.; Rimsza, J.M. (December 2022). "Kinetic model for prediction of subcritical crack growth, crack tip relaxation, and static fatigue threshold in silicate glass". Journal of Non-Crystalline Solids: X 16 (100134): 100134. doi:10.1016/j.nocx.2022.100134. Bibcode2022JNCSX..1600134G. https://doi.org/10.1016/j.nocx.2022.100134. 
  8. Ruys, Andrew (2019). Processing, structure, and properties of alumina ceramics. Woodhead Publishing. pp. 71–121. doi:10.1016/C2017-0-01189-8. ISBN 978-0-08-102442-3. https://doi.org/10.1016/C2017-0-01189-8. 
  9. Laughton, M.J.; Warne, D.J.; Tricker, R. (2003). Optical Fibres in Power Systems (16 ed.). Newnes. pp. 37-1, 37-3-37-17. doi:10.1016/B978-075064637-6/50037-X. ISBN 978-0-7506-4637-6. https://doi.org/10.1016/B978-075064637-6/50037-X. 
  10. Kingery, W.D. (1976). Introduction to ceramics. New York: Wiley. ISBN 978-0471478607. https://archive.org/details/introductiontoce0000king. 
  11. Ebel, A.; Caty, O.; Rebillat, F. (2022). "Effect of temperature on static fatigue behavior of self-healing CMC in humid air". Composites Part A: Applied Science and Manufacturing 157: 106899. doi:10.1016/j.compositesa.2022.106899. https://www.sciencedirect.com/science/article/pii/S1359835X22000926. 
  12. 12.0 12.1 Wilkins, B.J.; Dutton, R. (March 1976). "Static Fatigue Limit with Particular Reference to Glass". Journal of the American Ceramic Society 59 (3–4): 108–112. doi:10.1111/j.1151-2916.1976.tb09442.x. https://doi.org/10.1111/j.1151-2916.1976.tb09442.x. 
  13. Kelly, A.; Zweben, C.; Sims, G.D.; Broughton, W.R. (2000). Comprehensive Composite Materials (2.05 - Glass Fiber Reinforced Plastics—Properties). 2. Pergamon. pp. 151–197. doi:10.1016/B0-08-042993-9/00181-9. ISBN 978-0-08-042993-9. https://doi.org/10.1016/B0-08-042993-9/00181-9. 
  14. Pfeifer, Michael (2009). "Chapter 6 - Degradation and Reliability of Materials". Materials Enabled Designs. Butterworth Heinemann. pp. 161–187. doi:10.1016/B978-0-7506-8287-9.00006-9. ISBN 978-0-7506-8287-9. https://www.sciencedirect.com/science/article/pii/B9780750682879000069. 
  15. 15.0 15.1 Farshad, Mehdi (2006-01-01), Farshad, Mehdi, ed., "7 - Fatigue, corrosion, and wear" (in en), Plastic Pipe Systems (Oxford: Elsevier Science): pp. 153–165, ISBN 978-1-85617-496-1, https://www.sciencedirect.com/science/article/pii/B9781856174961500082, retrieved 2023-04-15 
  16. Goodman, Soderberg (2022), "Fatigue", MET 301: Design for Cyclic Loading, New Jersey Institute of Technology, p. 1, https://web.njit.edu/~sengupta/met%20301/cyclic_loading%20indefinite.pdf