Chemistry:Phosphidogermanate

From HandWiki
Revision as of 03:20, 6 February 2024 by Steve2012 (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Phosphidogermanates are chemical compounds that have phosphorus bound to germanium to yield anions. They are in the category of phosphidotetrelates and also pnictides. They are analogous to nitridogermanates, phosphidoaluminates, phosphidogallates, phosphidoindates, phosphidosilicates or phosphidostannates. They are under investigation as infrared non-linear optic materials[1] and solid-state electrolytes.[2]

List

formula name MW crystal

system

space

group

unit cell Å volume density form properties references
GeP monoclinic C2/m a = 15.1948 b = 3.6337 c = 9.1941 β = 101.239° [3]
Li2GeP2 148.458 tetragonal I41/acd a = 12.3069 c = 19.0306 Z=32 2882.42 2.736 Ge4P10 supratetrahedra red [4]
LiGe3P3 317.751 orthorhombic Pbam a = 9.8459 b = 15.7489 c = 3.5995 Z=4 558.15 3.780 GeP4 and Ge(P3Ge) tetrahedra in

5 and 6-membered rings making 2D slabs

black [4]
Li8GeP4 252 Pa3 a=11.80203 c=11.80203 Z=8 1643.88 2.037 [5][6]
Li8GeP4 251.99 cubic P43n a=11.77294 Z=8 1635.98 2.046 [5][6]
Li14GeP6 cubic Fm3m a=5.95667 Z=4 1.860 brown [2][7]
Li10.1Ge5P Pnma a=10.360 b=4.3072 c=24.267 Z=4 1082.8 2.86 Ge5 rings black; actually is a germanide phosphide [8]
NaGe3P3 orthorhombic Pmc21 a=3.6276 b=8.407 c=10.332 Z=2 315.09 3.517 Ge3P7 ring red; band gap 2.06 eV; semiconductor [9]
Na2Ge3P3 356.72 monoclinic C2/m a = 17.639 b = 3.6176 c = 11.354 β = 92.74° Z=4 723.7 3.274 black [10]
Na5Ge7P5 monoclinic C2/m a = 16.168 b = 3.6776 c = 12.924 β = 91.30° Z=2 768.2 3.343 black [10]
Na8GeP4 380.4 cubic Fd3m a=13.4230 Z=8 2418.53 2.08943 same as Na8SnSb4 black; decomposes over 350°C to Na10Ge2P6;band gap 1.9 eV [5]
Na10Ge2P6 monoclinic P21/n a=13.176 b =7.36.4 c=8.042 β=90.26° Z=2 780.29 2.38 beige; moisture sensitive [11]
CuGe2P3 [12]
ZnGeP2 I42d a=5.466 c=10.722 melt 1027°C [1][13][14][15]
Ag6Ge10P12 1744.76 cubic I43m a=10.3111 Z=2 1096.3 5.286 air stable; silver grey; thermoelectric [16][17][18]
CdGeP2 I42d a=5.740 c=10.773 [19]
Cs5GeP3 orthorhombic Pnma a=14.31 b=5.994 c=15.618 Z=4 metallic [20]
BaGe2P2 344.46 tetragonal P42mc a =7.6153 c =8.490 Z=4 492.3 4.647 light metallic grey; melt 861 °C [21]

References

  1. 1.0 1.1 Yang, He‐Di; Ran, Mao‐Yin; Wei, Wen‐Bo; Wu, Xin‐Tao; Lin, Hua; Zhu, Qi‐Long (2021-11-02). "The Rise of Infrared Nonlinear Optical Pnictides: Advances and Outlooks" (in en). Chemistry – an Asian Journal 16 (21): 3299–3310. doi:10.1002/asia.202100935. ISSN 1861-4728. PMID 34469055. https://onlinelibrary.wiley.com/doi/10.1002/asia.202100935. 
  2. 2.0 2.1 Strangmueller, Stefan; Eickhoff, Henrik; Mueller, David; Klein, Wilhelm; Raudaschl-Sieber, Gabriele; Kirchhain, Holger; Sedlmeier, Christian; Baran, Volodymyr et al. (2020-11-23). "Fast Lithium Ionic Conductors Li 14 SiP 6 , Li 14 GeP 6 , and Li 14 SnP 6 – Structure-Property-Relationships in the Newly Discovered Family of Lithium Phosphidotetrelates". ECS Meeting Abstracts MA2020-02 (5): 874. doi:10.1149/MA2020-025874mtgabs. ISSN 2151-2043. https://iopscience.iop.org/article/10.1149/MA2020-025874mtgabs. 
  3. Shen, Hailin; Ma, Zhongtao; Yang, Bingchao; Guo, Bingkun; Lyu, Yingchun; Wang, Peng; Yang, Hangsheng; Li, Qianqian et al. (September 2019). "Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries" (in en). Journal of Power Sources 433: 126682. doi:10.1016/j.jpowsour.2019.05.088. Bibcode2019JPS...43326682S. https://linkinghub.elsevier.com/retrieve/pii/S0378775319306536. 
  4. 4.0 4.1 Eickhoff, Henrik; Sedlmeier, Christian; Klein, Wilhelm; Raudaschl‐Sieber, Gabriele; Gasteiger, Hubert A.; Fässler, Thomas F. (2020-02-14). "Polyanionic Frameworks in the Lithium Phosphidogermanates Li 2 GeP 2 and LiGe 3 P 3 – Synthesis, Structure, and Lithium Ion Mobility" (in en). Zeitschrift für anorganische und allgemeine Chemie 646 (3): 95–102. doi:10.1002/zaac.201900228. ISSN 0044-2313. 
  5. 5.0 5.1 5.2 Fässler, Thomas Friedrich; Botta, Manuel; Zeitz, Sabine (2023-08-31). "Synthesis, Structure and Physical Properties of the Most Sodium‐Rich Phosphidogermanate Na8GeP4" (in en). Zeitschrift für anorganische und allgemeine Chemie. doi:10.1002/zaac.202300166. ISSN 0044-2313. 
  6. 6.0 6.1 Eickhoff, Henrik; Strangmüller, Stefan; Klein, Wilhelm; Kirchhain, Holger; Dietrich, Christian; Zeier, Wolfgang G.; van Wüllen, Leo; Fässler, Thomas F. (2018-09-25). "Lithium Phosphidogermanates α- and β-Li 8 GeP 4 —A Novel Compound Class with Mixed Li + Ionic and Electronic Conductivity" (in en). Chemistry of Materials 30 (18): 6440–6448. doi:10.1021/acs.chemmater.8b02759. ISSN 0897-4756. https://pubs.acs.org/doi/10.1021/acs.chemmater.8b02759. 
  7. Strangmüller, Stefan; Eickhoff, Henrik; Raudaschl-Sieber, Gabriele; Kirchhain, Holger; Sedlmeier, Christian; van Wüllen, Leo; Gasteiger, Hubert A.; Fässler, Thomas F. (2020-08-25). "Modifying the Properties of Fast Lithium-Ion Conductors—The Lithium Phosphidotetrelates Li 14 SiP 6 , Li 14 GeP 6 , and Li 14 SnP 6" (in en). Chemistry of Materials 32 (16): 6925–6934. doi:10.1021/acs.chemmater.0c02052. ISSN 0897-4756. https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02052. 
  8. Eickhoff, H.; Klein, W.; Toffoletti, L.; Raudaschl‐Sieber, G.; Fässler, T. F. (2022-05-25). "Planar Si 5 and Ge 5 Pentagons beside Isolated Phosphide Anions in Lithium Phosphide Tetrelides Li 10+x Si 5 P and Li 10+x Ge 5 P" (in en). Zeitschrift für anorganische und allgemeine Chemie 648 (10). doi:10.1002/zaac.202100376. ISSN 0044-2313. 
  9. Feng, Kai; Yin, Wenlong; He, Ran; Lin, Zheshuai; Jin, Shifeng; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (2012). "NaGe 3 P 3 : a new ternary germanium phosphide featuring an unusual [Ge 3 P 7 ring"] (in en). Dalton Trans. 41 (2): 484–489. doi:10.1039/C1DT11345C. ISSN 1477-9226. PMID 22042509. http://xlink.rsc.org/?DOI=C1DT11345C. 
  10. 10.0 10.1 Eickhoff, Henrik; Hlukhyy, Viktor; Fässler, Thomas F. (2020-11-30). "Na 2 Ge 3 P 3 and Na 5 Ge 7 P 5 Comprising Heteroatomic Polyanions Mimicking the Structure of Fibrous Red Phosphorus" (in en). Zeitschrift für anorganische und allgemeine Chemie 646 (22): 1834–1838. doi:10.1002/zaac.202000316. ISSN 0044-2313. https://onlinelibrary.wiley.com/doi/10.1002/zaac.202000316. 
  11. Roesky, Herbert W.; Noltemeyer, Mathias; Sheldrick, George M. (1985-07-01). "Synthese und Struktur des Trifluoracetyldicyanomethanids". Zeitschrift für Naturforschung B 40 (7): 883–890. doi:10.1515/znb-1985-0706. ISSN 1865-7117. 
  12. Hailing, Tu; Saunders, G.A.; Omar, M.S.; Pamplin, B.R. (January 1984). "The elastic behaviour of the ternary zincblende structure semiconductor CuGe2P3" (in en). Journal of Physics and Chemistry of Solids 45 (2): 163–172. doi:10.1016/0022-3697(84)90115-X. Bibcode1984JPCS...45..163H. https://linkinghub.elsevier.com/retrieve/pii/002236978490115X. 
  13. Boyd, G. D.; Buehler, E.; Storz, F. G. (1971-04-01). "LINEAR AND NONLINEAR OPTICAL PROPERTIES OF ZnGeP2 AND CdSe" (in en). Applied Physics Letters 18 (7): 301–304. doi:10.1063/1.1653673. ISSN 0003-6951. Bibcode1971ApPhL..18..301B. https://pubs.aip.org/apl/article/18/7/301/42290/LINEAR-AND-NONLINEAR-OPTICAL-PROPERTIES-OF-ZnGeP2. 
  14. Carnio, B. N.; Zhang, M.; Zawilski, K. T.; Schunemann, P. G.; Moutanabbir, O.; Elezzabi, A. Y. (19 May 2023). "Intra-pulse difference frequency generation in ZnGeP2 for high-frequency terahertz radiation generation". Scientific Reports 13 (1): 8161. doi:10.1038/s41598-023-35131-6. PMID 37208445. Bibcode2023NatSR..13.8161C. 
  15. Buehler, E.; Wernick, J. H.; Wiley, J. D. (August 1973). "The ZnP2-Ge system and growth of single crystals of ZnGeP2" (in en). Journal of Electronic Materials 2 (3): 445–454. doi:10.1007/BF02660148. ISSN 0361-5235. Bibcode1973JEMat...2..445B. http://link.springer.com/10.1007/BF02660148. 
  16. Nowak, E.; Neumann, H.; Omar, M. S. (January 1988). "Heat capacity of Ag6Ge10p12 from 180 to 550 K" (in en). Crystal Research and Technology 23 (1): 103–106. doi:10.1002/crat.2170230114. https://onlinelibrary.wiley.com/doi/10.1002/crat.2170230114. 
  17. Nuss, Jürgen; Wedig, Ulrich; Xie, Wenjie; Yordanov, Petar; Bruin, Jan; Hübner, Ralph; Weidenkaff, Anke; Takagi, Hidenori (2017-08-22). "Phosphide–Tetrahedrite Ag 6 Ge 10 P 12 : Thermoelectric Performance of a Long-Forgotten Silver-Cluster Compound" (in en). Chemistry of Materials 29 (16): 6956–6965. doi:10.1021/acs.chemmater.7b02474. ISSN 0897-4756. https://pubs.acs.org/doi/10.1021/acs.chemmater.7b02474. 
  18. Namiki, H.; Kobayashi, M.; Nagata, K.; Saito, Y.; Tachibana, N.; Ota, Y. (June 2022). "Relationship between the density of states effective mass and carrier concentration of thermoelectric phosphide Ag6Ge10P12 with strong mechanical robustness" (in en). Materials Today Sustainability 18: 100116. doi:10.1016/j.mtsust.2022.100116. 
  19. Masumoto, K.; Isomura, S.; Goto, W. (November 1966). "The preparation and properties of ZnSiAs2, ZnGeP2 and CdGeP2 semiconducting compounds" (in en). Journal of Physics and Chemistry of Solids 27 (11–12): 1939–1947. doi:10.1016/0022-3697(66)90124-7. Bibcode1966JPCS...27.1939M. https://linkinghub.elsevier.com/retrieve/pii/0022369766901247. 
  20. Eisenmann, Brigitte; Klein, Jürgen; Somer, Mehmet (January 1990). "Anions Isosteric with CO32− in Cs5SiP3, Cs5SiAs3, Cs5GeP3, and Cs5GeAs3" (in en). Angewandte Chemie International Edition in English 29 (1): 87–88. doi:10.1002/anie.199000871. ISSN 0570-0833. https://onlinelibrary.wiley.com/doi/10.1002/anie.199000871. 
  21. Chen, Jindong; Lin, Chensheng; Peng, Guang; Xu, Feng; Luo, Min; Yang, Shunda; Shi, Shuangshuang; Sun, Yingshuang et al. (2019-12-24). "BaGe 2 Pn 2 (Pn = P, As): Two Congruent-Melting Non-chalcopyrite Pnictides as Mid- and Far-Infrared Nonlinear Optical Materials Exhibiting Large Second Harmonic Generation Effects" (in en). Chemistry of Materials 31 (24): 10170–10177. doi:10.1021/acs.chemmater.9b03863. ISSN 0897-4756. https://pubs.acs.org/doi/10.1021/acs.chemmater.9b03863.