Orthogonal polynomials on the unit circle
In mathematics, orthogonal polynomials on the unit circle are families of polynomials that are orthogonal with respect to integration over the unit circle in the complex plane, for some probability measure on the unit circle. They were introduced by Szegő (1920, 1921, 1939).
Definition
Let [math]\displaystyle{ \mu }[/math] be a probability measure on the unit circle [math]\displaystyle{ \mathbb{T} =\{z\in\mathbb{C} :|z|=1\} }[/math] and assume [math]\displaystyle{ \mu }[/math] is nontrivial, i.e., its support is an infinite set. By a combination of the Radon-Nikodym and Lebesgue decomposition theorems, any such measure can be uniquely decomposed into
- [math]\displaystyle{ d\mu =w(\theta) \frac{d\theta}{2\pi} + d\mu_s }[/math],
where [math]\displaystyle{ d\mu_s }[/math] is singular with respect to [math]\displaystyle{ d\theta/2\pi }[/math] and [math]\displaystyle{ w \in L^{1}(\mathbb{T}) }[/math] with [math]\displaystyle{ wd\theta/2\pi }[/math] the absolutely continuous part of [math]\displaystyle{ d\mu }[/math].[1]
The orthogonal polynomials associated with [math]\displaystyle{ \mu }[/math] are defined as
- [math]\displaystyle{ \Phi_n(z)=z^n + \text{lower order} }[/math],
such that
- [math]\displaystyle{ \int \bar{z}^j\Phi_n(z)\,d\mu(z) =0, \quad j = 0,1,\dots,n-1 }[/math].
The Szegő recurrence
The monic orthogonal Szegő polynomials satisfy a recurrence relation of the form
- [math]\displaystyle{ \Phi_{n+1}(z)=z\Phi_n(z)-\overline\alpha_n\Phi_n^*(z) }[/math]
- [math]\displaystyle{ \Phi_{n+1}^{\ast}(z)=\Phi_n^{\ast}(z)-\alpha_n z\Phi_n(z) }[/math]
for [math]\displaystyle{ n \geq 0 }[/math] and initial condition [math]\displaystyle{ \Phi_0=1 }[/math], with
- [math]\displaystyle{ \Phi_n^*(z)=z^n\overline{\Phi_n(1/\overline{z})} }[/math]
and constants [math]\displaystyle{ \alpha_n }[/math] in the open unit disk [math]\displaystyle{ \mathbb{D} = \{ z\in \mathbb{C} : |z|\lt 1\} }[/math] given by
- [math]\displaystyle{ \alpha_n = -\overline{\Phi_{n+1}(0)} }[/math]
called the Verblunsky coefficients. [2] Moreover,
- [math]\displaystyle{ \|\Phi_{n+1}\|^{2} = \prod_{j=0}^{n} (1-|\alpha_j|^2) = (1-|\alpha_n|^2)\|\Phi_n\|^2 }[/math].
Geronimus' theorem states that the Verblunsky coefficients associated with [math]\displaystyle{ d\mu }[/math] are the Schur parameters:[3]
- [math]\displaystyle{ \alpha_n(d\mu) = \gamma_n }[/math]
Verblunsky's theorem
Verblunsky's theorem states that for any sequence of numbers [math]\displaystyle{ \{\alpha_{j}^{(0)}\}_{j=0}^{\infty} }[/math] in [math]\displaystyle{ \mathbb{D} }[/math] there is a unique nontrivial probability measure [math]\displaystyle{ \mu }[/math] on [math]\displaystyle{ \mathbb{T} }[/math] with [math]\displaystyle{ \alpha_j(d\mu)=\alpha_j^{(0)} }[/math].[4]
Baxter's theorem
Baxter's theorem states that the Verblunsky coefficients form an absolutely convergent series if and only if the moments of [math]\displaystyle{ \mu }[/math] form an absolutely convergent series and the weight function [math]\displaystyle{ w }[/math] is strictly positive everywhere.[5]
Szegő's theorem
For any nontrivial probability measure [math]\displaystyle{ d\mu }[/math] on [math]\displaystyle{ \mathbb{T} }[/math], Verblunsky's form of Szegő's theorem states that
- [math]\displaystyle{ \prod_{n = 0}^\infty(1-|\alpha_n|^2) = \exp\big(\frac{1}{2\pi}\int_0^{2\pi}\log w(\theta)\,d\theta\big). }[/math]
The left-hand side is independent of [math]\displaystyle{ d\mu_s }[/math] but unlike Szegő's original version, where [math]\displaystyle{ d\mu = d\mu_{ac} }[/math], Verblunsky's form does allow [math]\displaystyle{ d\mu_s \neq 0 }[/math].[6] Subsequently,
- [math]\displaystyle{ \sum_{n = 0}^\infty |\alpha_n|^2 \lt \infty \;\iff\; \frac{1}{2\pi}\int_0^{2\pi}\log w(\theta)\,d\theta \gt -\infty }[/math].
One of the consequences is the existence of a mixed spectrum for discretized Schrödinger operators.[7]
Rakhmanov's theorem
Rakhmanov's theorem states that if the absolutely continuous part [math]\displaystyle{ w }[/math] of the measure [math]\displaystyle{ \mu }[/math] is positive almost everywhere then the Verblunsky coefficients [math]\displaystyle{ \alpha_n }[/math] tend to 0.
Examples
The Rogers–Szegő polynomials are an example of orthogonal polynomials on the unit circle.
See also
Notes
- ↑ Simon 2005a, p. 43.
- ↑ Simon 2010, p. 44.
- ↑ Simon 2010, p. 74.
- ↑ Schmüdgen 2017, p. 265.
- ↑ Simon 2005a, p. 313.
- ↑ Simon 2010, p. 29.
- ↑ Totik 2016, p. 269.
References
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials on the unit circle", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, http://dlmf.nist.gov/18.33
- Schmüdgen, Konrad (2017). The Moment Problem. Graduate Texts in Mathematics. 277. Cham: Springer International Publishing. doi:10.1007/978-3-319-64546-9. ISBN 978-3-319-64545-2.
- Simon, Barry (2005). Orthogonal polynomials on the unit circle. Part 1. Classical theory. American Mathematical Society Colloquium Publications. 54. Providence, R.I.: American Mathematical Society. ISBN 978-0-8218-3446-6.
- Simon, Barry (2005). Orthogonal polynomials on the unit circle. Part 2. Spectral theory. American Mathematical Society Colloquium Publications. 54. Providence, R.I.: American Mathematical Society. ISBN 978-0-8218-3675-0.
- Simon, Barry (2010). Szegő's theorem and its descendants: spectral theory for L² perturbations of orthogonal polynomials. Princeton University Press. ISBN 978-0-691-14704-8.
- Szegő, Gábor (1920), "Beiträge zur Theorie der Toeplitzschen Formen", Mathematische Zeitschrift 6 (3–4): 167–202, doi:10.1007/BF01199955, ISSN 0025-5874, https://zenodo.org/record/1447413
- Szegő, Gábor (1921), "Beiträge zur Theorie der Toeplitzschen Formen", Mathematische Zeitschrift 9 (3–4): 167–190, doi:10.1007/BF01279027, ISSN 0025-5874, https://zenodo.org/record/1447419
- Szegő, Gábor (1939), Orthogonal Polynomials, Colloquium Publications, XXIII, American Mathematical Society, ISBN 978-0-8218-1023-1, https://books.google.com/books?id=3hcW8HBh7gsC
- Totik, V. (2016). "Barry Simon and the János Bolyai International Mathematical Prize". Acta Mathematica Hungarica (Springer Science and Business Media LLC) 149 (2): 263–273. doi:10.1007/s10474-016-0618-x. ISSN 0236-5294. https://publicatio.bibl.u-szeged.hu/9443/1/simon.pdf.
Original source: https://en.wikipedia.org/wiki/Orthogonal polynomials on the unit circle.
Read more |