Affine action
From HandWiki
Let [math]\displaystyle{ W }[/math] be the Weyl group of a semisimple Lie algebra [math]\displaystyle{ \mathfrak{g} }[/math] (associate to fixed choice of a Cartan subalgebra [math]\displaystyle{ \mathfrak{h} }[/math]). Assume that a set of simple roots in [math]\displaystyle{ \mathfrak{h}^* }[/math] is chosen. The affine action (also called the dot action) of the Weyl group on the space [math]\displaystyle{ \mathfrak{h}^* }[/math] is
- [math]\displaystyle{ w\cdot \lambda:=w(\lambda+\delta)-\delta }[/math]
where [math]\displaystyle{ \delta }[/math] is the sum of all fundamental weights, or, equivalently, the half of the sum of all positive roots.
References
- Baston, Robert J.; Eastwood, Michael G. (1989), The Penrose Transform: its Interaction with Representation Theory, Oxford University Press.
Original source: https://en.wikipedia.org/wiki/Affine action.
Read more |