Ahlfors measure conjecture

From HandWiki
Revision as of 16:28, 6 February 2024 by Dennis Ross (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, the Ahlfors conjecture, now a theorem, states that the limit set of a finitely-generated Kleinian group is either the whole Riemann sphere, or has measure 0.

The conjecture was introduced by Ahlfors (1966), who proved it in the case that the Kleinian group has a fundamental domain with a finite number of sides. (Canary 1993) proved the Ahlfors conjecture for topologically tame groups, by showing that a topologically tame Kleinian group is geometrically tame, so the Ahlfors conjecture follows from Marden's tameness conjecture that hyperbolic 3-manifolds with finitely generated fundamental groups are topologically tame (homeomorphic to the interior of compact 3-manifolds). This latter conjecture was proved, independently, by (Agol 2004) and by (Calegari Gabai).

(Canary 1993) also showed that in the case when the limit set is the whole sphere, the action of the Kleinian group on the limit set is ergodic.

References