Bohr–Favard inequality

From HandWiki
Revision as of 17:34, 6 February 2024 by LinuxGuru (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The Bohr–Favard inequality is an inequality appearing in a problem of Harald Bohr[1] on the boundedness over the entire real axis of the integral of an almost-periodic function. The ultimate form of this inequality was given by Jean Favard;[2] the latter materially supplemented the studies of Bohr, and studied the arbitrary periodic function

[math]\displaystyle{ f(x) = \ \sum _ { k=n } ^ \infty (a _ {k} \cos kx + b _ {k} \sin kx) }[/math]

with continuous derivative [math]\displaystyle{ f ^ {(r)} (x) }[/math] for given constants [math]\displaystyle{ r }[/math] and [math]\displaystyle{ n }[/math] which are natural numbers. The accepted form of the Bohr–Favard inequality is

[math]\displaystyle{ \| f \| _ {C} \leq K \| f ^ {(r)} \| _ {C} , }[/math]

[math]\displaystyle{ \| f \| _ {C} = \max _ {x \in [0, 2 \pi ] } | f(x) | , }[/math]

with the best constant [math]\displaystyle{ K = K (n, r) }[/math]:

[math]\displaystyle{ K = \sup _ {\| f ^ {(r)} \| _ {C} \leq 1 } \ \| f \| _ {C} . }[/math]

The Bohr–Favard inequality is closely connected with the inequality for the best approximations of a function and its [math]\displaystyle{ r }[/math]th derivative by trigonometric polynomials of an order at most [math]\displaystyle{ n }[/math] and with the notion of Kolmogorov's width in the class of differentiable functions (cf. Width).

References

  1. Bohr, Harald (1935). "Un théorème général sur l'intégration d'un polynôme trigonométrique". C. R. Acad. Sci. Paris Sér. I 200: 1276–1277. 
  2. Favard, Jean (1937). "Sur les meilleurs procédés d'approximation de certaines classes des fonctions par des polynômes trigonométriques". Bull. Sci. Math. 61 (209–224): 243–256. 

Definition of Free Cultural Works logo notext.svg This article incorporates text from a free content work. Licensed under CC BY-SA and GFDL Bohr-Favard inequality, see revision history for contributors, Encyclopedia of Mathematics. To learn how to add open license text to HandWiki articles, please see this how-to page. For information on reusing text from HandWiki, please see the terms of use. [[Category:Free content from Encyclopedia of Mathematics]]